首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the influence of N or P depletion, alternate N‐ or P‐sources, salinity, and temperature on karlotoxin (KmTx) production in strains of Karlodinium veneficum (D. Ballant.) J. Larsen, an ichthyotoxic dinoflagellate that shows a high degree of variability of toxicity in situ. The six strains examined represented KmTx 1 (CCMP 1974, MD 2) and KmTx 2 (CCMP 2064, CCMP 2283, MBM1) producers, and one strain that did not produce detectable karlotoxin under nutrient‐replete growth conditions (MD 5). We hypothesized that growth‐limiting conditions would result in higher cell quotas of karlotoxin. KmTx was present in toxic strains during all growth phases and increased in stationary and senescent phase cultures under low N or P, generally 2‐ to 5‐fold but with some observations in the 10‐ to 15‐fold range. No karlotoxin was observed under low‐N or low‐P conditions in the nontoxic strain MD 5. Nutrient‐quality (NO3, NH4, urea, and glycerophosphate) did not affect growth rate, but growth on NH4 produced 2‐ to 3‐fold higher cellular toxicity and a 50% higher ratio of KmTx 1‐1:KmTx 1‐3 in CCMP 1974. CCMP 1974 showed higher cellular toxicity at low salinity (≤5 ppt) and high temperature (25°C). Our results suggested that given the presence of a toxic strain of K. veneficum in situ, the existence of environmental conditions that favor cellular accumulation of karlotoxin is likely a significant factor underlying K. veneficum–related fish kills that require both high cell densities (104 · mL?1) and high cellular toxin quotas relative to those generally observed in nutrient‐replete cultures.  相似文献   

2.
Toxin analysis of 15 species of Kareniaceae revealed the presence of karlotoxin, KmTx 2, in only a single species (Karlodinium veneficum) but with variable activity in strains from the Swan (KmSwanTx 2‐1, 2.1 pg · cell?1; and KmSwanTx 2‐2, 0.53 pg · cell?1), Huon (KmHuonTx 2, 0.86 pg · cell?1), and Derwent rivers (<0.001 pg · cell?1) in Australia. A newly isolated Southern Ocean species, Karlodinium conicum, contained a novel poorly hemolytic karlotoxin analogue (KmconicumTx, 2.8 pg · cell?1). The hemolytic potency (HD50%) of the Australian karlotoxins were as follows: KmSwanTx 2‐1 (65.9 ± 4.8 ng) and KmSwanTx 2‐2 (63.4 ± 3.7 ng), KmHuonTx 2 (343 ± 4.9 ng), and KmconicumTx (>4,000 ng). Species from the closely related genera Takayama (T. helix, T. tasmanica, T. tuberculata), Karenia (K. asterichroma, K. brevis, K. mikimotoi, K. papilionacea, K. umbella), and Karlodinium (Ka. australe, Ka. antarcticum, Ka. ballantinum, Ka. corrugatum, Ka. decipiens) were all consistently negative for karlotoxin production. Brevetoxin (PbTx) was only detected in K. brevis, and hemolytic activity was only observed in Ka. veneficum strains.  相似文献   

3.
Karlodinium veneficum is a cosmopolitan dinoflagellate with a worldwide distribution in mesohaline temperate waters. The toxins from K. veneficum, or karlotoxins (KmTxs), which have been implicated in fish kill events, have been purified from monoalgal cultures, and shown to possess hemolytic, cytotoxic and ichthyotoxic activities. Three karlotoxins (KmTx 1–1, KmTx 1–3 and KmTx 2) have been isolated from two different North American strains of K. veneficum and characterized using liquid chromatography–mass spectrometry (LC–MS). KmTx 1 karlotoxins have a UV absorption maximum (λmax 225 nm) at lower wavelengths than KmTx 2 karlotoxins (λmax 235 nm). The exact masses and predicted empirical formulae for the karlotoxins (KmTx 1–1, 1308.8210, C67H120O24; KmTx 1–3, 1322.8637, and C69H126O23; KmTx 2, 1344.7938, C67H121ClO24) were determined using high resolution mass spectrometry. Although the individual toxins produce a single peak in reverse phase high performance liquid chromatography (HPLC), MS revealed congeners co-eluting within each peak. These congeners could be separated under normal phase chromatography and revealed a single hydroxylation being responsible for the mass differences. Multistage MS (MSn) showed that the three KmTxs and their congeners share a large portion of their structures including an identical 907 amu core fragment.

These data were used to develop a quantitative LC–MS assay for karlotoxins from cultures and environmental samples. The sensitivity afforded by MS detection compared to UV absorbance allowed toxin quantification at 0.2 ng when injected on column. Aqueous solutions of karlotoxins were found to quantitatively adsorb to PTFE and nylon membrane filters. Aliquots from whole cultures or environmental samples could be concentrated and desalted by adsorption to PTFE syringe filters and karlotoxins eluted with methanol for analysis by LC–MS. This simplified solid phase cleanup afforded new data indicating that each karlotoxin may also exist as sulfated derivatives and also provided a rapid detection method for karlotoxin from environmental samples and whole cultures.  相似文献   


4.
The small athecate dinoflagellate Karlodinium zhouanum is a species recently described in the coastal waters of China. K. zhouanum is morphologically similar to Karlodinium veneficum, a typical ichthyotoxic blooming karlotoxin‐producing species, and it is impossible to distinguish between these two species based on light microscopy. In this study, strains of K. zhouanum isolated from the East China Sea were studied. By analyzing toxins, toxicity, lipid characteristics and typical molecular and physiological traits of this species, K. zhouanum was shown to be nontoxic to brine shrimp and widely spread over the coastal waters of China. No karlotoxin‐like toxin was detected by liquid chromatography‐mass spectrometry (LC–MS). Instead of gymnodinosterol, the critical sterol in toxic K. veneficum, 27(nor)‐24S‐4α‐Methyl‐5α‐ergosta‐8(14)‐en‐3β‐ol ( NEE ) was dominant in K. zhouanum, while gymnodinosterol was absent. These sterol characteristics may provide not only support for the species separation between toxic and nontoxic species of Karlodinium but also environmental survey tools to differentiate the contribution of nontoxic Karlodinium strains, which has been unclear until now.  相似文献   

5.
《Harmful algae》2011,10(6):557-562
Two species of Kareniaceae, Karlodinium veneficum (Swan and Huon River isolates) and Karlodinium conicum, and their respective purified karlotoxins (KmTx), were investigated for ichthyotoxicity on larval sheepshead minnow. Two non-karlotoxin producing species, Karenia mikimotoi and Karlodinium ballantinum were also tested. Algal treatments included live and lysed cells (homogenized and CuSO4 treated) with fish mortalities observed from lysed Ka. veneficum and Ka. conicum but none observed from K. mikimotoi and Ka. ballantinum. The variance in ichthyotoxicity between live and lysed cells of Ka. veneficum (Swan and Huon River) and Ka. conicum (Southern Ocean) confirm that toxin is cell bound and ichthyotoxicity increases upon lysis. Ichthyotoxic blooms of Ka. veneficum in situ in the Swan River, Western Australia and Chesapeake Bay, Maryland, USA are unrelated to algal cell density as mortality was observed with low densities. In laboratory treatments, no fish mortalities were observed upon exposure to live intact cells of all four species at algal concentrations up to 2.5 × 105 cells/mL in replete nutrient growth conditions. Lysed low density (3 × 104 cells/mL) Ka. veneficum (Swan and Huon River) grown under P-limited nutrients caused quicker fish mortality than those cultured in replete nutrient conditions. Pure toxin isolated from Ka. veneficum (Swan and Huon River) and Ka. conicum (Southern Ocean) were toxic to sheepshead minnow larvae, with the lethal dose lowest for KmHuonTx 2 (508.2 ng/mL), followed by KmSwanTx 2-1 (563.2 ng/mL), and KmconicumTx (762.4 ng/mL).  相似文献   

6.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

7.
The parasitic dinoflagellate Amoebophrya sp. ex Karlodinium veneficum was used to test two hypotheses: (1) infection of cells decreases with increasing host toxicity and (2) parasitism causes the catabolism of host toxin. To test the first hypothesis, host strains differing in toxin content were inoculated with dinospores of Amoebophrya sp. derived from infected cultures of toxic and non-toxic K. veneficum, with resulting infections assessed following 24-h incubations. Contrary to expectations, infection of K. veneficum by Amoebophrya sp. was positively correlated with host toxicity. To examine the second hypothesis, synchronous infection with >80% of cells being parasitized was induced using a toxic strain of K. veneficum, and total toxin concentration (intracellular plus extracellular levels of KmTX1) was followed over the 3-day infection cycle. Toxin content ml−1 increased with growth of K. veneficum in uninfected control cultures, but declined in infected cultures as the parasite completed its life cycle. On a cellular basis, toxin content of infected and uninfected cultures differed little during the experiment, suggesting that the parasite does not actively catabolise host toxin. Rather, infection appears to promote degradation of toxins via death of host cells and subsequent bacterial activity. Results indicate that Amoebophrya sp. ex K. veneficum has greater potential to impact toxic strains relative to non-toxic host strains in natural systems. Thus, Amoebophrya sp. ex. K. veneficum may limit the occurrence of toxic K. veneficum blooms in marine and estuarine environments, while simultaneously functioning as a pathway for dissipation of host toxin.  相似文献   

8.
The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY # 103) was measured by liquid chromatography–mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.  相似文献   

9.
We examined the sterol profile of Karlodinium veneficum (D. Ballant.) J. Larsen, Akashiwo sanguinea (Hiraska) Ge. Hansen et Moestrup, Alexandrium tamarense (M. Lebour) Balech, Alexandrium affine (H. Inoue et Fukuyo) Balech, Gonyaulax polygramma F. Stein, and Gymnodinium instriatum (Freud. et J. J. Lee) Coats, along with their Amoebophyra parasites. There were no consistent sterol profiles that characterized the genus Amoebophyra. Instead, in five out of six comparisons, the host and parasite sterol profiles where highly correlated. The one exception, Amoebophyra sp. ex Alex. tamarense, was least like its host in sterol profile and also possessed the widest host range for infection. There was little correlation between host and parasite in fatty acid profiles, with the parasite being deficient in fatty acids characteristic of the plastid [e.g., 18:5(n‐3) associated with galactolipids of the thylakoids, as previously published by Adolf et al. (2007)]. Those hosts and parasites with sterol profiles dominated by desmethyl sterols were most sensitive to karlotoxin toxicity. In the host‐parasite pairs most sensitive to karlotoxin addition, recovery of the intact karlotoxin molecule was poorest. Given the sensitivity to karlotoxin, some species of Amoebophyra may avoid infection of K. veneficum.  相似文献   

10.
Athecate dinoflagellate Karlodinium veneficum is a universal toxic species possessing karlotoxins recognized especially as ichthyotoxic as well as cytotoxic and hemolytic. Blooms of K. veneficum, both single-species or accompanied with other species, occurred more frequently worldwide in recent years, including the coastal region of China. Normally, K. veneficum present in relatively low abundance in phytoplankton communities in estuary regions. Being small and difficult to identify with light microscopy, it has been ignored for a long time till its blooming and toxins being confirmed. How it presents in background level and what is its relationship with critical geological and hydrological environment factors are basically not clear. In this study, the paper reports the application of a real-time quantitative PCR (qPCR) method to investigate the abundance and distribution of K. veneficum in the coastal waters of Xiangshan Bay in the East China Sea (ECS), a typical bay area of harmful algae blooms and heavily affected by anthropogenic activities. The real-time qPCR assay came out being an efficient method at detecting even low cell densities of K. veneficum of different genotypes. A total of 38 field samples of surface (0.5 m) and bottom water (9–100 m in depth) were analyzed and 12 samples were found positive for K. veneficum. At least 3 genotypes of K. veneficum present in this region. Temperatures in sites of K. veneficum positive ranged from 21.7 to 23.4 °C, and salinity levels were between 21.1 and 26.3. The K. veneficum distributed quite extensively in the waters of Xiangshan Bay, cell abundance varied from a low of 4 cells/L to a maximum of 170 cells/L. Most of the samples containing K. veneficum were collected from bottom water in different sites. At three of the 19 sampling sites, K. veneficum was detected in both surface and bottom water samples. Especially at sampling site near Beilun port, where the water is typically muddy with low transparency, relative high cell numbers of K. veneficum were found in both surface and bottom waters. Mixotrophy and vertical migration of K. veneficum could be important eco-physiological factors to consider in terms of understanding these distribution characteristics. The ideal conditions for K. veneficum growth and aggregation in this area still needs further study.  相似文献   

11.
Recurrent fish kills in the Spanish Alfacs Bay (NW Mediterranean) have been detected during winter seasons since 1994, and were attributed to an unarmored, ichthyotoxic, dinoflagellate, initially identified as Gyrodinium corsicum Paulmier, Berland, Billard, & Nezan. Several strains were isolated from the bay and their clonal cultures were compared by combined techniques, including light and electron microscopy, internal transcribed spacer and 5.8S rDNA nucleotide sequencing, and HPLC pigment analyses, together with studies of their photochemical performance, growth rates, and toxicity. Using phylogenetic analyses, all strains were identified as members of the genus Karlodinium, but they were separated into two genetically distinct groups. These groups, identified as Karlodinium veneficum (Ballantine) J. Larsen and K. armiger Bergholtz, Daugbjerg et. Moestrup, were also supported by the other techniques used. Detailed analyses of fine structural characteristics (including plug‐like structures in amphiesma and a possible layer of semi‐opaque material beneath the outer membrane) allowed discrimination of the mentioned two species. Specific differences in pigment patterns coincided with that expected for low‐ (K. veneficum) and high‐light (K. armiger) adapted relatives. The higher photosynthetic efficiency of K. veneficum and the longer reactivation times of the PSII reaction centers observed for K. armiger were in agreement with this hypothesis. The two species differed in toxicity, but the strains used always induced mortality when incubated with bivalves, rotifers, and finfish. Compared with K. armiger, strains of K. veneficum yielded higher cell densities, but had lower growth rates.  相似文献   

12.
The salinity tolerance of 62 strains of Pfiesteria and Pfiesteria‐like heterotrophic dinoflagellates was measured. All strains were acclimated at 12 psu for at least 1 year before experimentation. Strains isolated from the Chesapeake Bay and Neuse River systems tolerated lower salinities than strains isolated from the Wilmington River system (P< 0.005). Swimming cells were still observed after 5 days at 0.5 psu for one strain, and at 1 psu for most other Chesapeake Bay and Neuse River strains. Swimming cells for the Wilmington River were still observed after 5 days at 3–5 psu, but no swimming cells were observed at ≤ 2 psu. With regard to the upper salinity tolerance, the Wilmington River strains tolerated higher salinities than the Chesapeake Bay and Neuse River systems (P< 0.005). Most Wilmington River strains were swimming after 5 days at salinities ≥ 50 psu, whereas the Chesapeake Bay and Neuse River system strains rarely had swimming cells at salinities exceeding 35–45 psu. For all three water systems and for both lower and higher salinities, cells apparently encysted in many instances. However, when salinities were returned to 12 psu, swimming cells often re‐appeared. Statistically significant geographic differences in salinity tolerance suggest a geographic adaptation has occurred and that salinity tolerance is under genetic control. The results also suggest there is diversity among the strains.  相似文献   

13.
The composition of the paralytic shellfish toxins (PSTs) of five Alexandrium tamarense strains isolated from the coastal waters of southern China and one Alexandrium minutum strain from Taiwan Island were investigated. A. tamarense CI01 and A. tamarense Dapeng predominantly produced C2 toxin (over 90%) with trace amounts of C1 toxin (C1), gonyautoxin-2 (GTX2) and GTX3; two strains of A. tamarense HK9301 maintained in different locations produced C1-4 toxins and GTX1, 4, 5 and 6; no PSTs were found in A. tamarense NEW, while A. minutum TW produced only GTX1-4. The toxin compositions of cultured A. tamarense strains did not vary as much during different growth phases as did the toxin composition of A. minutum TW. The toxin compositions of A. tamarense HK9301-1 did not change significantly under different salinity, light intensity, and nitrate and phosphate levels in the culture medium, although the toxin productivity varied expectably. Another strain HK9301-2 maintained in a different location produced much less toxins with a considerably different toxin composition. Under similar culture maintenance conditions for 3 years, the toxin profiles of A. tamarense HK9301-1 did not change as much as did A. tamarense CI01. Our results indicate that toxin compositions of the dinoflagellate strains are strain-specific and are subject to influence by nutritional and environmental conditions but not as much by the growth phase. Use of toxin composition in identifying a toxigenic strain requires special caution.  相似文献   

14.
FiftyEscherichia coli strains isolated from stool samples of 51 healthy children, 143 strains isolated from stool samples of 327 children with diarrhea and 24 strains isolated from stool samples of 21 children with suspected hemolytic uremic syndrome were examined for the presence of Shiga toxin-producingE. coli virulence factors (shiga toxin 1 and 2, intimin and enterohemolysin) and their genes. Vero-cell assay and latex agglutination were used for detection of Shiga toxin 1 and 2, TSB agar with washed erythrocytes was used for detection of enterohemolysin; genes encoding shiga toxin 1 and 2, intimin and enterohemolysin were detected using multiplex PCR. The presence ofE. coli strains harboring genes encoding shiga toxin 1 and 2 (12 strains), intimin (34 strains) and enterohemolysin (12 strains) was demonstrated.  相似文献   

15.
A thecate dinoflagellate (Peridiniales, Dinophyceae) was cultured from individual non-calcareous cysts, isolated from surface sediment samples collected in Okinawa, Japan. Two isolates (CAWD188 and CAWD190) from two different sampling sites, each cultured from an individual cyst, produced ca. 11.9 and 15 pg cell−1 pinnatoxin G, respectively, as determined by liquid chromatography–mass spectrometric (LC–MS). No other pinnatoxins were detected. The motile cells and cysts appeared morphologically identical to those of pinnatoxins E and F producers isolated from New Zealand waters and pinnatoxins E, F, and G producers isolated from Australian waters. Motile and cysts cells measured an average of 25 μm long × 21.3 μm wide and 29 μm long × 25.5 μm wide, respectively. Analysis of the large subunit ribosomal DNA sequence data showed two well supported strains with slight differences between the Japanese and the Australasian isolates.  相似文献   

16.
A total of 103 strains of estuarine, Chitinoclastic bacteria isolated from water, and sediment samples collected from the upper Chesapeake Bay, including 17 freshwater and 11 seawater isolates, were subjected to numerical taxonomy analysis. The isolates included 44 yellow-orange pigmented strains classified asCytophaga-like bacteria (CLB) of theCytophagaceae. Salt requirement of the strains ranged from tolerance to 1% NaCl to an absolute requirement for NaCl, with 1% NaCl satisfying this requirement. The largest phenon consisted of facultatively anaerobic, oligo-nitrophilic, and flexirubin pigment-producing freshwater and estuarine isolates, and included reference strains of bothCytophaga johnsonae Stanier andCytophaga aquatilis Strohl and Tait. Other phena, containing a smaller number of strains, comprised marine and estuarine isolates which did not produce flexirubin pigments, and required organic nitrogen for growth and for production of chitinolytic enzymes. Salt-requiring, flexirubin pigment-producing, chitin-degrading strains were, on occasion, isolated from estuarine samples and represented phena found in estuaries. Most of theCytophaga isolates, as well as chitin-degrading species not of the genusCytophaga that were isolated from Chesapeake Bay, clustered in phena representing previously described species of aerobic, zymogenic, chitinoclastic bacteria. When the frequency of occurrence of features related to environmental parameters, viz., pH, salinity, temperature range of growth, and growth on media lacking organic nitrogen, was calculated, ecological groupings of strains in the 2 major phena of CLB could be distinguished among the estuarine, chitin-degrading bacteria.  相似文献   

17.
A total of 65 isolates of Vibrio cholerae, serotypes other than O--1, have been recovered from water, sediment, and shellfish samples from the Chesapeake Bay. Isolations were not random, but followed a distinct pattern in which salinity appeared to be a controlling factor in V. cholerae distribution. Water salinity at stations yielding V. cholerae (13 out of 21 stations) was 4 to 17 0/00, whereas the salinity of water at stations from which V. cholerae organisms were not isolated was less than 4 or greater than 17 0/00. From results of statistical analyses, no correlation between incidence of fecal coliforms and V. cholerae could be detected, whereas incidence of Salmonella species, measured concurrently, was clearly correlated with fecal coliforms, with Salmonella isolated only in areas of high fecal coliform levels. A seasonal cycle could not be determined since strains of V. cholerae were detectable at low levels (ca. 1 to 10 cells/liter) throughout the year. Although none of the Chesapeake Bay isolates was agglutinable in V. cholerae O group 1 antiserum, the majority for Y-1 adrenal cells. Furthermore, rabbit ileal loop and mouse lethality tests were also positive for the Chesapeake Bay isolates, with average fluid accumulation in positive ileal loops ranging from 0.21 to 2.11 ml/cm. Serotypes of the strains of V. cholerae recovered from Chesapeake Bay were those of wide geographic distribution. It is concluded from the data assembled to date, that V. cholerae is an autochthonous estuarine bacterial species resident in Chesapeake Bay.  相似文献   

18.
Aeromonas hydrophila: Ecology and Toxigenicity of Isolates from an Estuary   总被引:8,自引:7,他引:1  
A microbiological survey of Aeromonas hydrophila in Chesapeake Bay and its tributaries showed that this species is ubiquitous, occurring in numbers ranging from <0.3/l to 5 × 103/ml in the water column and ca. 4.6 × 102/g in sediment. It was recovered from water samples collected at several locations in Chesapeake Bay representing various salinity regimes, but the numbers of A. hydrophila in higher salinity water, i.e. 15O/OO, were low. Results of stepwise multiple linear regression analysis showed that concentrations of A. hydrophila were correlated with total, aerobic, viable, heterotrophic, bacterial counts, and, in addition, were inversely related to salinity and to concentration of dissolved oxygen. Seasonal occurrence was recorded, with fewer strains of A. hydrophila encountered during the winter months. The potential pathogenicity of A. hydrophila strains isolated from Chesapeake Bay was estimated by testing selected isolates for toxigenicity, using the Y-1 adrenal cell assay. Of 116 isolates tested, 83 (71%) produced a cytotoxic response, a characteristic found to be correlated with the lysine decarboxylase and Voges-Proskauer reactions. Eight of 11 strains tested, which elicited fluid accumulation in the rabbit ligated ileal loop assay, also provoked a cytotoxic reaction in the Y-l adrenal cell assay. Results of the study indicate that large numbers of toxigenic A. hydrophila can be found in an estuary and such strains may be pathogenic for man and/or animals.  相似文献   

19.
Small subunit rRNA sequences were amplified from Amoebophrya strains infecting Karlodinium micrum, Gymnodinium instriatum and an unidentified Scrippsiella species in Chesapeake Bay. The alignable parts of the sequences differed from each other and from the previously reported rRNA sequence of the Amoebophrya strain infecting Akashiwo sanguinea in Chesapeake Bay by 4 to 10%. This is a greater degree of difference than sometimes found between sequences from separate genera of free-living dinoflagellates. These sequence differences indicate that the Amoebophrya strains parasitizing dinoflagellates in Chesapeake Bay do not all belong to the same species. In spite of their relative dissimilarity, the sequences do group together into a single clade with high bootstrap support in phylogenetic trees constructed from the sequences.  相似文献   

20.
We examined whether fatty acid (FA) composition changed when Karlodinium veneficum (D. Ballantine) J. Larsen (Dinophyceae) was grown phototrophically or mixotrophically on Storeatula major Butcher ex D. R. A. Hill (Cryptophyceae). We hypothesized that the FA composition of mixotrophic K. veneficum would not change relative to the FA composition of phototrophic K. veneficum. As in other phototrophic dinoflagellates, octadecapentaenoic acid (18:5n3) represented 9% to 20% of total FA in K. veneficum and was enriched within chloroplast‐associated galactolipid classes. The 18:5n3 content showed a highly significant positive correlation (r2 = 0.95) with chl a content and a highly significant negative correlation with growth rate (r2 = 0.88). A previously undescribed chloroplast galactolipid molecular species, digalactosyldiacylglycerol (DGDG; 18:5n3/18:5n3), was a dominant structural lipid in K. veneficum. Docosahexaenoic acid (22:6n3) represented 14% to 19% of total K. veneficum FA and was enriched within phospholipids. In the prey S. major, 18:5n3 was not present, but octadecatetraenoic acid (18:4n3) and α‐linolenic acid (18:3n3) represented approximately 50% of total FA and were enriched within chloroplast‐associated galactolipid classes. Eicosapentaenoic acid (20:5n3) and 22:6n3 represented approximately 18% of total FA in S. major and were enriched within phospholipids. The FA profile of mixotrophic K. veneficum, compared to phototrophic K. veneficum, showed elevated levels of 18:3n3, 18:4n3, and 20:5n3, and lower but persistent levels of 18:5n3. Production to ingestion (P:I) ratios >1 for major polyunsaturated fatty acids (PUFAs) indicated that direct assimilation from prey under balanced growth could not support rates of PUFA production in mixotrophic K. veneficum. These data suggest that the plastid plays a continuing and essential role in lipid metabolism during mixotrophic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号