首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
Agents that increase the intracellular Ca2+ concentration have been examined for their ability to stimulate 3H-inositol polyphosphate accumulation in rat cerebral cortex slices. Elevated extracellular K+ levels, the alkaloid sodium channel activator veratrine, the calcium ionophore ionomycin, and the marine toxin maitotoxin were all able to stimulate phosphoinositide metabolism. Certain features appear common to the agents studied. Thus, although [3H]inositol monophosphate, [3H]inositol bisphosphate ([3H]InsP2), and [3H]inositol trisphosphate were all stimulated, a proportionally greater effect was observed on [3H]InsP2 in comparison to stimulation by the muscarinic receptor agonist carbachol. However, only an elevated K+ level stimulated [3H]inositol tetrakisphosphate ([3H]InsP4) accumulation alone or produced marked synergy with carbachol on the formation of this polyphosphate. The results suggest that agents that elevate the cytoplasmic Ca2+ concentration in cerebral cells can increase the hydrolysis of membrane polyphosphoinositides. The pattern of the response differs from that produced by muscarinic receptor agonists and indicate that Ca2(+)-dependent hydrolysis may involve different pools of lipids, phosphoinositidase C enzymes, or both. However, clear differences in the ability of these agents to stimulate InsP4, alone or in the presence of muscarinic agonist, suggest that factors other than a simple elevated intracellular Ca2+ concentration are implicated.  相似文献   

2.
The effects of muscarinic agonists and depolarizing agents on inositol phospholipid hydrolysis in the rabbit vagus nerve were assessed by the measurement of [3H]inositol monophosphate production in nerves that had been preincubated with [3H]inositol. After 1 h of drug action, carbachol, oxotremorine, and arecoline increased the inositol monophosphate accumulation, though the maximal increase induced by these agonists differed. Addition of the muscarinic antagonists atropine or pirenzepine shifted the carbachol dose-response curves to the right, without decreasing the carbachol maximal stimulatory effects. The KB for pirenzepine was 35 nM, which is characteristic of muscarinic high-affinity binding sites coupled to phosphoinositide turnover and often associated with the M1 receptor subtype. On the other hand, agents known to depolarize or to increase the intracellular Ca2+ concentration, e.g., elevated extracellular K+, ouabain, Ca2+, and the Ca2+ ionophore A23187, also increased inositol monophosphate accumulation. These effects were not mediated by the release of acetylcholine, as suggested by the fact that they could not be potentiated by the addition of physostigmine nor inhibited by the addition of atropine. The Ca(2+)-channel antagonist Cd2+, also known to inhibit the Na+/Ca2+ exchanger, was able to block the effects of K+ and ouabain, but did not alter those of carbachol. These results suggest that depolarizing agents increase inositol monophosphate accumulation in part through elevation of the intracellular Ca2+ concentration and that muscarinic receptors coupled to phosphoinositide turnover are present along the trunk of the rabbit vagus nerve.  相似文献   

3.
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process.  相似文献   

4.
S Marc  D Leiber    S Harbon 《The Biochemical journal》1988,255(2):705-713
1. In the intact guinea-pig myometrium, carbachol and oxytocin stimulated a specific receptor-mediated phospholipase C activation, catalysing the breakdown of PtdIns(4,5)P2 with the sequential generation of InsP3, InsP2 and InsP. Stimulation of muscarinic receptors also triggered an inhibition of cyclic AMP accumulation caused by prostacyclin. 2. NaF plus AlCl3 mimicked the effects of carbachol and oxytocin by inducing, in a dose-dependent manner, the generation of all three inositol phosphates as well as uterine contractions. AlCl3 enhanced the fluoride effect, supporting the concept that A1F4- was the active species. Under similar conditions, fluoroaluminates activated the guanine nucleotide regulatory protein Gi, reproducing the inhibitory effect of carbachol on cyclic AMP concentrations. 3. Both carbachol- and oxytocin-mediated increases in inositol phosphates, as well as contractions, were insensitive to pertussis toxin, under conditions where the expression of Gi was totally prevented. Cholera toxin, which activates Gs and enhances cyclic AMP accumulation, failed to affect basal or oxytocin-evoked inositol phosphate generation, but induced a slight, though consistent, attenuation of the muscarinic inositol phosphate response, which was similarly evoked by forskolin. 4. The data provide evidence that, in the myometrium, (a) a G protein mediates the generation of inositol phosphates and the Ca2+-dependent contractile event, (b) the relevant G protein that most probably couples muscarinic and oxytocin receptors to phospholipase C is different from Gi and Gs, the proteins that couple receptors to adenylate cyclase, and (c) cyclic AMP does not seem to control the phosphoinositide cycle, but rather exerts a negative regulation at the muscarinic-receptor level.  相似文献   

5.
The actions of the excitatory amino acid N-methyl-D-aspartate (NMDA) on the accumulation of 3H-inositol polyphosphate isomers in rat cerebral cortex slices have been examined over short (less than 5 min) incubation periods. NMDA caused the dose-dependent accumulation of only [3H]inositol monophosphate and [3H]inositol bisphosphate (maximal effect between 0.3 and 1 mM), with no increase in [3H]inositol trisphosphate ([3H]InsP3) and [3H]inositol tetrakisphosphate ([3H]InsP4). HPLC analysis confirmed this, showing no increases in the breakdown products of [3H]Ins(1,3,4,5)P4. When present with the muscarinic agonist carbachol (1 mM), high concentrations of NMDA (1 mM) could almost totally inhibit carbachol-induced accumulation of 3H-inositol polyphosphates. In contrast, at lower concentrations of NMDA (10 microM), the inhibitory effect was replaced with a synergistic accumulation of inositol polyphosphates, especially [3H]InsP4 and [3H]InsP3. The inhibitory effects of NMDA were only apparent when extracellular Ca2+ was present, although incubation in media with no added Ca2+ resulted in somewhat reduced stimulatory responses to NMDA alone, but suppressed totally the inhibitory effects of 1 mM NMDA and reduced the synergistic effects of 10 microM NMDA on carbachol responses. These studies, therefore, reveal Ca(2+)-dependent effects of NMDA indicative of indirect mechanisms of action and show that care must be made in interpreting the effects of NMDA on phosphoinositide metabolism unless the inositol polyphosphate composition has been fully characterised.  相似文献   

6.
The effects of lithium on platelet phosphoinositide metabolism.   总被引:3,自引:1,他引:2       下载免费PDF全文
The effects on phosphoinositide metabolism of preincubation of platelets for 90 min with 10 mM-Li+ were studied. Measurements were made of [32P]phosphate-labelled phosphoinositides and of [3H]inositol-labelled inositol mono-, bis- and tris-phosphate (InsP, InsP2 and InsP3). Li+ had no effect on the basal radioactivity in the phosphoinositides or in InsP2 or InsP3, but it caused a 1.8-fold increase in the basal radioactivity in InsP. Li+ caused a 4-, 3- and 2-fold enhanced thrombin-induced accumulation of label in InsP, InsP2 and InsP3 respectively. Although the elevated labelling of InsP2 and InsP3 returned to near-basal values within 30-60 min, the high labelling of InsP did not decline over a period of 60 min after addition of thrombin to Li+-treated platelets, consistent with inhibition of InsP phosphatase by Li+. The effect of Li+ was not due to a shift in the thrombin dose-response relationship; increasing concentrations of thrombin enhanced the initial rate of production of radiolabelled inositol phosphates, whereas Li+ affected either a secondary production or the rate of their removal. The only observed effect of Li+ on phosphoinositide metabolism was a thrombin-induced decrease (P less than 0.05) in labelled phosphatidylinositol 4-phosphate in Li+-treated platelets; this suggests an effect on phospholipase C. Li+ enhanced (P less than 0.05) the thrombin-induced increase in labelled lysophosphatidylinositol, suggesting an effect on phospholipase A2. It is concluded that Li+ inhibits InsP phosphatase and has other effects on phosphoinositide metabolism in activated platelets. The observed effects occur too slowly to be the mechanism by which Li+ potentiates agonist-induced platelet activation.  相似文献   

7.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

9.
In pregnant-rat myometrium (day 21 of gestation), isoprenaline-induced cyclic AMP accumulation, resulting from receptor-mediated activation of adenylate cyclase, was negatively regulated by prostaglandins [PGE2, PGF2 alpha; EC50 (concn. giving 50% of maximal response) = 2 nM] and by the muscarinic agonist carbachol (EC50 = 2 microM). PG-induced inhibition was prevented by pertussis-toxin treatment, supporting the idea that it was mediated by the inhibitory G-protein Gi through the inhibitory pathway of the adenylate cyclase. Both isoprenaline-induced stimulation and PG-evoked inhibition of cyclic AMP were insensitive to Ca2+ depletion. By contrast, carbachol-evoked attenuation of cyclic AMP accumulation was dependent on Ca2+ and was insensitive to pertussis toxin. The inhibitory effect of carbachol was mimicked by ionomycin. Indirect evidence was thus provided for the enhancement of cyclic AMP degradation by a Ca2(+)-dependent phosphodiesterase activity in the muscarinic-mediated effect. The attenuation of cyclic AMP elicited by carbachol coincided with carbachol-stimulated inositol phosphate (InsP3, InsP2 and InsP) generation, which displayed an almost identical EC50 (3 microM) and was similarly unaffected by pertussis toxin. Both carbachol effects were reproduced by oxotremorine, whereas pilocarpine (a partial muscarinic agonist) failed to induce any decrease in cyclic AMP accumulation and concurrently was unable to stimulate the generation of inositol phosphates. These data support our proposal for a carbachol-mediated enhancement of a Ca2(+)-dependent phosphodiesterase activity, compatible with the rises in Ca2+ associated with muscarinic-induced increased generation of inositol phosphates. They further illustrate that a cross-talk between the two major transmembrane signalling systems contributed to an ultimate decrease in cyclic AMP in the pregnant-rat myometrium near term.  相似文献   

10.
We have shown previously that exposure of a non-transformed continuous line of rat liver epithelial (WB) cells to epidermal growth factor (EGF), adrenaline, angiotensin II or [Arg8]vasopressin results in an accumulation of the inositol phosphates InsP1, InsP2 and InsP3 [Hepler, Earp & Harden (1988) J. Biol. Chem. 263, 7610-7619]. Studies were carried out with WB cells to determine whether the EGF receptor and other, non-tyrosine kinase, hormone receptors stimulate phosphoinositide hydrolysis by common, overlapping or separate pathways. The time courses for accumulation of inositol phosphates in response to angiotensin II and EGF were markedly different. Whereas angiotensin II stimulated a very rapid accumulation of inositol phosphates (maximal by 30 s), increases in the levels of inositol phosphates in response to EGF were measurable only following a 30 s lag period; maximal levels were attained by 7-8 min. Chelation of extracellular Ca2+ with EGTA did not modify this relative difference between angiotensin II and EGF in the time required to attain maximal phospholipase C activation. Under experimental conditions in which agonist-induced desensitization no longer occurred in these cells, the inositol phosphate responses to EGF and angiotensin II were additive, whereas those to angiotensin II and [Arg8]vasopressin were not additive. In crude WB lysates, angiotensin II, [Arg8]vasopressin and adrenaline each stimulated inositol phosphate formation in a guanine-nucleotide-dependent manner. In contrast, EGF failed to stimulate inositol phosphate formation in WB lysates in the presence or absence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]), even though EGF retained the capacity to bind to and stimulate tyrosine phosphorylation of its own receptor. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate the inhibitory guanine-nucleotide regulatory protein of adenylate cyclase (Gi), had no effect on the capacity of EGF or hormones to stimulate inositol phosphate accumulation. In intact WB cells, the capacity of EGF, but not angiotensin II, to stimulate inositol phosphate accumulation was correlated with its capacity to stimulate tyrosine phosphorylation of the 148 kDa isoenzyme of phospholipase C. Taken together, these findings suggest that, whereas angiotensin II, [Arg8]vasopressin and alpha 1-adrenergic receptors are linked to activation of one or more phospholipase(s) C by an unidentified G-protein(s), the EGF receptor stimulates phosphoinositide hydrolysis by a different pathway, perhaps as a result of its capacity to stimulate tyrosine phosphorylation of phospholipase C-gamma.  相似文献   

11.
The role of insulin in modulating phosphoinositide breakdown and accumulation of inositol phosphates was investigated in isolated rat pancreatic islets by using GPAIS (guinea-pig anti-insulin antiserum) that neutralizes effects of insulin in the medium. At either 3.0 mM- or 16.7 mM-glucose or 3.0 mM-glucose plus 10 microM-arecaidine propargyl ester (muscarinic receptor agonist), GPAIS (but not control serum) was able to increase InsP2 and InsP3, but not InsP, in myo-[3H] inositol-prelabelled islets. The effect of GPAIS on 3H incorporation into InsP3 was dose-dependent, with a half-maximal effect at a concentration able to bind 4004 +/- 163 microunits of insulin. A specific mass assay of the biologically relevant isomer Ins (1,4,5)P3 revealed a huge increase (greater than 3-folf). Formation of PtdIns, PtdInsP and PtdInsP2 was not affected by GPAIS. This is indirect evidence for an effect of insulin on inositide metabolism, and therefore endogenously released insulin may have led to an underestimation in earlier studies of effects of insulinotropic substances on inositol phosphate accumulation.  相似文献   

12.
Phosphoinositide hydrolysis was studied in a washed membrane preparation of 1321N1 astrocytoma cells prelabeled with [3H]inositol. GTP gamma S stimulated the formation of [3H]inositol mono-, bis-, and trisphosphate ([3H]InsP, [3H]InsP2, and [3H]InsP3) with a half-maximal effect on [3H]InsP formation at 5 microM. Carbachol increased the accumulation of [3H]inositol phosphates only in the presence of added guanine nucleotide. Calcium increased [3H]InsP3 accumulation over a range of concentrations (10 nM-3 mM free calcium). When 1321N1 cells were treated with phorbol ester (100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)) prior to preparation of the membranes, the maximal [3H]InsP formation induced by GTP gamma S or GTP gamma S plus carbachol was decreased by 50-75%. In contrast, the response to a maximal calcium concentration presumed to activate phospholipase C directly was minimally inhibited (approximately 15%). PMA treatment did not affect muscarinic receptor affinity for carbachol or the effect of GTP on agonist binding. PMA treatment was also without effect on the breakdown of exogenous [3H]InsP3 in homogenates, permeabilized cells, and membranes, indicating that the InsP3-phosphatase was not the site of phorbol ester action. PMA treatment inhibited [3H] InsP3 formation only in membranes and not in cytosol prepared from the same cells, suggesting a membrane site of PMA action. Membranes were also required to demonstrate GTP gamma S-stimulated [3H]InsP3 formation although calcium-stimulated [3H]InsP3 formation was demonstrable in both membranes and cytosol. The addition of purified protein kinase C to the membranes mimicked the effect of PMA treatment to decrease GTP gamma S-stimulated [3H]InsP3 production. These data indicate that the effect of PMA on phosphoinositide metabolism is demonstrable in a cell-free system and that it can be mimicked by protein kinase C. We suggest that the ability of PMA to block GTP gamma S-stimulated formation of [3H]InsP3 results from inhibition of the G protein interaction with phospholipase C.  相似文献   

13.
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li.  相似文献   

14.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

15.
The biochemical responses to muscarinic stimulation (inhibition of isoproterenol-stimulated cAMP accumulation and stimulation of phosphoinositide turnover) were investigated in intact myocyte cultures prepared from the hearts of newborn rats. The studies employed young (5 days after plating) and aged (14 days old) myocyte cultures. Aging of the myocyte cultures was accompanied by marked alterations in both the inhibition of cAMP accumulation and the stimulation of the phosphoinositide metabolism via the muscarinic receptors. However, the effects on the two muscarinic responses were different. The first response was disrupted at the level of the coupling of the muscarinic receptors with adenylate cyclase through Gi. On the other hand, muscarinic stimulation of phosphoinositide hydrolysis still occurred in the aged myocyte cultures; however, the inositol trisphosphate generated was not converted to inositol 1-phosphate as in young cultures or as in aged cultures stimulated by norepinephrine. This raises the possibility that muscarinic activation of aged myocyte cultures shifts the metabolic state of the cells and alters the pathway of phosphoinositide hydrolysis. Treatment of aging cultures with phosphatidylcholine liposomes under conditions that yielded aged myocyte cultures with a lipid composition resembling that of young ones restored the muscarinic effect on cAMP accumulation, where the impairment in aged cultures was at the coupling stage (which takes place in the plasma membrane). This treatment had no effect on the response of the phosphoinositide metabolism to muscarinic stimulation.  相似文献   

16.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

17.
Agonist occupancy of muscarinic cholinergic receptors in human SH-SY-5Y neuroblastoma cells elicited two kinetically distinct phases of phosphoinositide hydrolysis when monitored by either an increased mass of inositol 1,4,5-trisphosphate, or the accumulation of a total inositol phosphate fraction. Within 5s of the addition of the muscarinic agonist, oxotremorine-M, the phosphoinositide pool was hydrolyzed at a maximal rate of 9.5%/min. This initial phase of phosphoinositide hydrolysis was short-lived (t1/2=14s) and after 60s of agonist exposure, the rate of inositol lipid breakdown had declined to a steady state level of 3.4%/min which was then maintained for at least 5–10 min. This rapid, but partial, attenuation of muscarinic receptor stimulated phosphoinositide hydrolysis occurred prior to the agonist-induced internalization of muscarinic receptors.Abbreviations I(1,4,5)P3 inositol 1,4,5-trisphosphate - IP total inositol phosphate fraction - IPL total inositol lipid fraction - mAChR muscarinic acetylcholine receptor - NMS N-methylscopolamine - Oxo-M oxotremorine-M - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PPI phosphoinositide - QNB quinuclidinyl benzilate Special issue dedicated to Dr. Bernard W. Agranoff  相似文献   

18.
1. The second-messengers system of bradykinin (BK) receptors was examined in NG108-15 neuroblastoma x glioma hybrid cells. 2. An application of BK induced an immediate outward (K+) current and acetylcholine (ACh) release, which are generated through inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ ions. 3. Application of phorbol dibutyrate (a protein kinase C activator) produced a voltage-dependent inward current and inhibited another K+ (M)-current. 4. A similar current response has been produced by ACh in NG108-15 cells transfected with rodent muscarinic ACh receptor I and III subtype genes. 5. These results suggest a dual and time-dependent role for these two intracellular messengers in the control of neuronal signalling by BK and ACh.  相似文献   

19.
Pertussis toxin was used to examine the role of the inhibitory guanine nucleotide regulatory protein, Ni, in muscarinic-receptor-mediated stimulation of phosphoinositide turnover and calcium mobilization. In cultured chick heart cells, pertussis-toxin treatment inhibited muscarinic-receptor-mediated attenuation of isoprenaline-stimulated cyclic AMP accumulation. This finding is consistent with the proposal that pertussis toxin blocks the capacity of Ni to couple muscarinic receptors to adenylate cyclase. In contrast, treatment of chick heart cells or 1321N1 human astrocytoma cells with pertussis toxin did not block muscarinic-receptor-mediated stimulation of phosphoinositide hydrolysis, as measured by [3H]inositol phosphate accumulation in the presence of Li+. Pertussis-toxin treatment also had little effect on basal and muscarinic-receptor-stimulated phosphatidylinositol synthesis, as measured by the incorporation of [3H]inositol into phosphatidylinositol. Activation of muscarinic receptors also enhances the rate of unidirectional 45Ca2+ efflux in 1321N1 cells; this response, like phosphoinositide hydrolysis, was not prevented by pertussis-toxin treatment. Our data suggest that muscarinic receptors are not coupled to phosphoinositide hydrolysis or calcium mobilization through Ni.  相似文献   

20.
Few receptor-mediated phenomena have been detected in peripheral nerve. In this study, the ability of the muscarinic cholinergic receptor agonist carbamylcholine to enhance phosphoinositide (PPI) breakdown in sciatic nerve was investigated by measuring the accumulation of inositol phosphates. Rat sciatic nerve segments were prelabeled with myo-[3H]inositol and then incubated either with or without carbamylcholine in the presence of Li+. [3H]Inositol monophosphate ([3H]IP) accumulation contained most of the radioactivity in inositol phosphates, with [3H]inositol bisphosphate ([3H]IP2) and [3H]inositol trisphosphate ([3H]IP3) accounting for 7-8% and 1-2% of the total, respectively. In the presence of 100 microM carbamylcholine, [3H]IP accumulation increased by up to 150% after 60 min. The 50% effective concentration for the response was determined to be 20 microM carbamylcholine and stimulated IP generation was abolished by 1 microM atropine. Enhanced accumulation of IP2 and IP3 was also observed. Determination of the pA2 values for the muscarinic receptor antagonists atropine (8.9), pirenzepine (6.5), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (5.7), and 4-diphenylacetoxy-N-methylpiperidinemethiodide (4-DAMP) (8.6) strongly suggested that the M3 muscarinic receptor subtype was predominantly involved in mediating enhanced PPI degradation. Following treatment of nerve homogenates and myelin-rich fractions with pertussis toxin and [32P]NAD+, the presence of an ADP-ribosylated approximately 40-kDa protein could be demonstrated. The results indicate that peripheral nerve contains key elements of the molecular machinery needed for muscarinic receptor-mediated signal transduction via the phosphoinositide cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号