首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized analysis of the generator potential responses of R1-6 cells of Calliphora provides remarkable information on the visual properties for the Diptera. This shows that, although these cells have two peak response sensivities for monochromatic stimuli at 350 and 480 nm under single color stimulus conditions, and when the background illumination is either zero or in the region of 450–560 nm, the sensitivity to ultraviolet light is practically eliminated for background illumination in either the ultraviolet or the region around 600 nm or when any simultaneous dynamic stimulus in the region of 480–550 nm is also applied. These results seem somewhat perplexing to an understanding of the behavioral vision properties. It also is not consistant with the concept that the ultraviolet response is initiated by a sensitizing pigment within these cells that transfers energy to the rhodopsin-metarhodopsin process. However, it strengthens other evidence that the limited condition of ultraviolet responses comes from interaction from R7,8 cells but does not play an important behavioral role in the visual system fed from cells R1-6. As discussed in this paper, any high level pattern recognition controlling behavioral response to ultraviolet stimuli comes from the R7,8 cell system.  相似文献   

2.
Freshly emerged, inexperienced imagos of the hoverfly Eristalis tenax L. extend their proboscis towards small, yellow colour stimuli, such as anther parts and artificial floral guides. The releasing of this behaviour, which is adapted to pollen feeding, was investigated in behavioural tests using white, UV-reflecting artificial flowers with four small screens illuminated with test stimuli serving as artificial floral guides. The releasing of the innate proboscis extension was tested using monochromatic test lights. Within an intensity range from approx. 5·1011 to approx. 1014 quanta · cm-2· s-1, the flies extended their proboscis only towards green and yellow test lights (approx. 520–600 nm). The inhibition of the innate proboscis extension was tested using mixed light stimuli composed of a yellow monochromatic reference light (560 nm, 1013 quanta·cm-2 -1) and of a monochromatic test light. When the reference light was mixed with ultraviolet or blue test lights, the releasing of the innate proboscis extension was strongly inhibited, whereas admixing green/yellow light slightly promoted it; admixing red light had no effect. The results indicate that the releasing of the innate proboscis extension is mediated by the photoreceptor type R8y. Other receptor types which could cause the inhibition of the proboscis reaction are discussed.  相似文献   

3.
The effects of vertical illumination with monochromatic lights on phototaxis of Daphnia magna in a test chamber were determined at five levels of equal quantal flux density (between 188 and 6.42 · 10−5 nEinstein). Visible adaptation light (500 nm) and subsequent spectral test light had the same quantal flux density. The animals reacted to ultraviolet light (260–380 nm) with negative phototaxis, whereas visible light (420–600 nm) caused positive phototaxis. Action spectra were determined, based on the evaluation of different parameters of phototactic behavior. The maximum spectral sensitivity in the ultraviolet was found at 340 nm. The maximum spectral efficiency in the visible varied in dependence on light intensity. Ecological consequences of the results are discussed. Accepted: 3 August 1998  相似文献   

4.
Abstract Studies in rodents with retinal degeneration indicated that neither the rod nor the cone photoreceptors obligatorily participate in circadian responses to light, including melatonin suppression and photoperiodic response. Yet there is a residual phase-shifting response in melanopsin knockout mice, which suggests an alternate or redundant means for light input to the SCN of the hypothalamus. The findings of Aggelopoulos and Meissl suggest a complex, dynamic interrelationship between the classic visual photoreceptors and SCN cell sensitivity to light stimuli, relative to various adaptive lighting conditions. These studies raised the possibility that the phototransductive physiology of the retinohypothalamic tract in humans might be modulated by the visual rod and cone photoreceptors. The aim of the following two-part study was to test the hypothesis that dim light adaptation will dampen the subsequent suppression of melatonin by monochromatic light in healthy human subjects. Each experiment included 5 female and 3 male human subjects between the ages of 18 and 30 years, with normal color vision. Dim white light and darkness adaptation exposures occurred between midnight and 0200 h, and a full-field 460-nm light exposure subsequently occurred between 0200 and 0330-h for each adaptation condition, at 2 different intensities. Plasma samples were drawn following the 2-h adaptation, as well as after the 460-nm monochromatic light exposure, and melatonin was measured by radioimmunoassay. Comparison of melatonin suppression responses to monochromatic light in both studies revealed a loss of significant suppression after dim white light adaptation compared with dark adaptation (p < 0.04 and p < 0.01). These findings indicate that the activity of the novel circadian photoreceptive system in humans is subject to subthreshold modulation of its sensitivity to subsequent monochromatic light exposure, varying with the conditions of light adaptation prior to exposure.  相似文献   

5.
Summary Cultures of unicellular algal flagellateEuglena gracilis grown in different conditions were subjected to action spectroscopy for step-down and step-up photophobic responses, respectively. The spectral region was extended into the UV-B/C as well as in the UV-A and visible regions with the Okazaki Large Spectrograph as the monochromatic light source. The photophobic responses of the cells were measured with an individual-cell assay method with the aid of a computerized video motion analyzer. In the UV-A and visible regions, the shapes of the action spectra were the so-called UV-A/blue type. In the newly studied UV-B/C region, new action peaks were found at 270 nm for the step-down response and at 280 nm for the step-up one. The absorption spectrum of flavin adenine dinucleotide (FAD) appeared to fit the action spectrum for the step-up response, whereas the shape of the step-down action spectrum, which has a UV-A peak (at 370 nm) higher than the blue peak (at 450 nm), appeared to be mimicked by the absorption spectrum of a mixed solution of 6-biopterin and FAD. These observations might also account for the fact that the UV-B/C peak wavelength at 270 nm of the action spectrum for the step-down response is shorter by 10 nm than the action spectrum for the step-up response at 280 nm.Abbreviations FAD flavin adenine dinucleotide - FWHM spectral full width at half maximum - NIBB National Institute for Basic Biology - OLS Okazaki Large Spectrograph - PFB paraflagellar body - UV-A ultraviolet light of spectral region between 320 and 400 nm - UV-B/C ultraviolet light of spectral region between 190 and 320 nm  相似文献   

6.
The responses of cabbage loopers to monochromatic light stimuli have been studied by electroretinogram (ERG) and electromyogram (EMG) techniques. The typical ERG response of the cabbage looper is composed of A, B, C, and D waves. The spectral sensitivity curves for male and female cabbage loopers show a major peak at 540 to 550 nm and a minor peak at 360 nm. The EMG response of the cabbage looper to monochromatic light is indicated by an increased firing of the basalar muscles, often resulting in double spikes on the same side as the light. There is no change in the basalar muscle activity on the side opposite the light, but sometimes an increase in the tergosternal muscle spikes on this side was observed. The turning intensity curves produced by counting the double basalar spikes shows a major peak in the near ultraviolet at 370 to 380 nm and minor peak at 560 to 570 nm.  相似文献   

7.
We applied the Wiener theory to analyse receptive field responses of L-cells in the carp and studied some dynamic properties of the receptive field of L-cells for monochromatic light stimuli. The L-cells were stimulated by each monochromatic light modulated in white-noise fashion. They responded almost linearly to all the monochromatic light stimuli. The impulse responses of the L-cells became larger in amplitude and faster in latency, peak response time, and repolarising phase as a spot of monochromatic light was enlarged. The L-cells seem to respond like a lowpass filter and the cutoff frequency of their gain characteristics increases with the enlargement of the monochromatic light spot. The relation between shift of cutoff frequency and spot diameter was monotonic increasing for each monochromatic light.  相似文献   

8.
The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.  相似文献   

9.
Complementary chromatic adaptation, a well-established phenomenon in some blue-green algae, has been observed inCalothrix clavata, a heterocystous blue-green alga of the family Rivulariaceae. The chromatic adaptation has been observed for fluorescent and incandescent light by measuring the absorption spectra. The material grown in fluorescent light forms more of phycoerythrin whereas more of phycocyanin tends to be formed in incandescent light. Besides this, photoreversal was observed by transferring the incandescent light grown alga to fluorescent light conditions and vice-versa. Effect of photoreversal and chromatic adaptation has also been discussed for this alga under different monochromatic light conditions. The influence of different light conditions on morphological changes, heterocysts and hormogonia formation has also been investigated. Both chromatic adaptation and photomorphogentic phenolmena in this alga show the involvement of some photoreversible (red:green) pigment.  相似文献   

10.
The functional properties of retinula cells of the fly Calliphora crythrocephala (wild type) have been determined through the application of nonlinear identification theory using white-gaussian stimulus functions. These results are also compared to similiar recordings of lamina cells. The accuracy of the resulting models is shown by the fact that those obtained from just 30 sec tests predict the actual total responses to the white-gaussian stimuli with a mean square error of about 5% and for a 2200 sec test the error is reduced to 2%. It has been shown that the second order kernels define all of the nonlinear properties and are the primary terms in the models for describing the variations in functional responses with illumination level, changing adaptation conditions and even variations in the conditions of the intracellular preparations.  相似文献   

11.
Summary Intracellular recordings of the retinula cell receptor potential to flashes of monochromatic light demonstrate the presence of ultraviolet photoreceptors in the retina of the honeybee-mimic dronefly (Diptera, Syrphidae,Eristalis). Photoreceptors for visible light were also found. Hence, the dronefly has the neural capability for color vision. This is consistent with behavioral studies. Color vision would aid this animal in its natural habit of forraging with the honeybee.Supported by grants AFOSR-71-2112 and NSF GB-30733.  相似文献   

12.
Summary Extrinsic fluorescence changes in squid giant axons were examined under a variety of experimental conditions using 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and other fluorescent probes. Measurements of the degree of polarization of the fluorescent light (with the axis of the polarizer parallel to the longitudinal axis of the axon) indicated that the class of the TNS molecules in the axon membrane which participate in production of fluorescence signals have a definite orientation with their absorption and emission oscillators directed parallel to the long axis of the axon. Rectangular depolarizing voltage pulses produced a transient decrease in the fluorescent intensity, of which the early component is correlated tentatively with the rise in the membrane conductance. In response to hyperpolarizing pulses, there was an increase in fluorescence intensity which may be explained in terms of increased incorporation of TNS into the ordered structure in the membrane. Hyperpolarizing responses in KCl depolarized axons were accompanied by a change in fluorescent intensity. Tetrodotoxin appeared to suppress the initial component of the fluorescence signal produced by depolarizing clamping pulses. The technique for detecting these fluorescence changes and the physico-chemical properties of TNS are described in some detail.  相似文献   

13.
Summary The retina of the garter snake contains 3 morphologically distinct classes of cone photoreceptor. The spectral mechanisms in the retinas of garter snakes (Thamnophis sirtalis and T. marcianus) were studied by recording a retinal gross potential, the electroretinogram, using a flicker photometric procedure. Spectral sensitivity functions recorded with stimuli presented at high temporal frequency (62.5 Hz) are broadly peaked in the region of 550–570 nm. These functions remain spectrally invariant (a) in the face of significant changes in stimulus pulse rate (8–62.5 Hz), (b) whether the eye is light or dark adapted, and (c) under conditions of intense chromatic adaptation. It is concluded that the garter snake has only a single class of cone pigment. The results from a curve fitting analysis suggests that this pigment has peak absorbance at about 556 nm.  相似文献   

14.
Ganoderma lucidum develops atypical fruiting structures (AFSs) with non-basidiocarpous basidiospores during the incubation under light on nutrient agar media. To examine the light quality effective in inducing AFSs, 17 isolates ofG. lucidum were incubated on agar media under light from different colored fluorescent lamps. Of the 17 isolates, 13 isolates produced AFSs and basidiospores under fluorescent lamps. Nine isolates formed AFSs in a broad light region from P-B (pure blue) to P-R (pure red) lamps. The remaining 4 isolates produced AFSs under different colored fluorescent lamps. No isolates formed AFSs in the dark or under BLB (black light blue) illumination. The mycelial growth was inhibited by light illumination, especially BLB light. Although the AFSs were induced at a very low light intensity such as 0.5µmol m–2s–1, the optimum light intensity for the AFS formation varied depending on the kind of fluorescent lamp and the isolate. The AFS formation inG. lucidum isolates was also tested under monochromatic light produced by the combination of interference filters and colored glass filters.G. lucidum isolates were separable into various types in the responses of AFS formation to monochromatic light, indicating thatG. lucidum is heterogeneous in its photo-response with regard to AFS formation.  相似文献   

15.
Polarized light sensitivity was examined in single units of the rainbow trout (Oncorhynchus mykiss) torus semicircularis, a sub-tectal visual area with a high degree of ultraviolet sensitivity. First, chromatically isolated torus units with inputs from each of the four cone mechanisms found in the trout visual system were separately examined for e-vector sensitivity. UV ON-response units showed polarization sensitivity for vertical ly (0° and 180°) polarized stimuli, while ON-response units of the short, middle and long cone mechanisms were not polarization sensitive. No OFF-response units of the UV or short cone mechanism were observed, but OFF-response units of the middle and long cone mechanisms show polarization sensitivity for horizontally (90°) polarized stimuli. Second, e-vector sensitivity was observed in color-coded units which received inputs from more than one cone mechanism and showed different sign responses (ON or OFF) at different points of the spectral sensitivity curve. Biphasic units which had ON input from the UV cone mechanism and OFF inputs from the middle and long cone mechanisms showed polarization opponency. This opponency was observed with a 380 nm stimulus when the threshold sensitivities of the alpha-band absorption peak of the UV mechanism and the beta-band absorption peak of the middle and long cone mechanisms were equal. We believe that biphasic torus units provide a possible cellular basis for polarized light vision in rainbow trout.Abbreviations UV ultraviolet - S short - M middle - L long - PS polarization sensitivity - TS torus semicircularis - ONR optic nerve response  相似文献   

16.
17.
It has long been assumed that bees cannot see red. However, bees visit red flowers, and the visual spectral sensitivity of bees extends into wavelengths to provide sensitivity to such flowers. We thus investigated whether bees can discriminate stimuli reflecting wavelengths above 560 nm, i.e., which appear orange and red to a human observer. Flowers do not reflect monochromatic (single wavelength) light; specifically orange and red flowers have reflectance patterns which are step functions, we thus used colored stimuli with such reflectance patterns. We first conditioned honey bees Apis mellifera to detect six stimuli reflecting light mostly above 560 nm and found that bees learned to detect only stimuli which were perceptually very different from a bee achromatic background. In a second experiment we conditioned bees to discriminate stimuli from a salient, negative (un-rewarded) yellow stimulus. In subsequent unrewarded tests we presented the bees with the trained situation and with five other tests in which the trained stimulus was presented against a novel one. We found that bees learned to discriminate the positive from the negative stimulus, and could unambiguously discriminate eight out of fifteen stimulus pairs. The performance of bees was positively correlated with differences between the trained and the novel stimulus in the receptor contrast for the long-wavelength bee photoreceptor and in the color distance (calculated using two models of the honeybee colors space). We found that the differential conditioning resulted in a concurrent inhibitory conditioning of the negative stimulus, which might have improved discrimination of stimuli which are perceptually similar. These results show that bees can detect long wavelength stimuli which appear reddish to a human observer. The mechanisms underlying discrimination of these stimuli are discussed. Handling Editor: Lars Chittka.  相似文献   

18.
中华通草蛉复眼光感受性   总被引:3,自引:0,他引:3  
运用视网膜电位(Electroretinogram,ERG)技术,对中华通草蛉Chrysopa sinica Tjedar成虫复眼在暗适应过程中对单色光和白光刺激的光感受变化进行了测定。结果表明:(1)在340~605 nm光谱范围内该草蛉的光反应表现3个峰,其中最高峰位于562 nm,次峰在524 nm,第3峰在460 nm;(2)一定光强度(LogI=4.5~0)范围内,其复眼ERG值随光强度的增强而增大,呈近线性增长式样;(3)暗适应时间影响其复眼的ERG值大小,在暗适应100 min时其ERG值达到稳定;(4)中华通草蛉复眼ERG的波形由4个部分组成:开光反应、正相电位、持续负电位和闭光反应。  相似文献   

19.
20.

Background  

Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号