首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Polyglutamine disorders are inherited neurodegenerative diseases caused by the accumulation of expanded polyglutamine protein (polyQ). Previously, we identified a new guanosine triphosphatase, CRAG, which facilitates the degradation of polyQ aggregates through the ubiquitin-proteasome pathway in cultured cells. Because expression of CRAG decreases in the adult brain, a reduced level of CRAG could underlie the onset of polyglutamine diseases. To examine the potential of CRAG expression for treating polyglutamine diseases, we generated model mice expressing polyQ predominantly in Purkinje cells. The model mice showed poor dendritic arborization of Purkinje cells, a markedly atrophied cerebellum and severe ataxia. Lentivector-mediated expression of CRAG in Purkinje cells of model mice extensively cleared polyQ aggregates and re-activated dendritic differentiation, resulting in a striking rescue from ataxia. Our in vivo data substantiate previous cell-culture-based results and extend further the usefulness of targeted delivery of CRAG as a gene therapy for polyglutamine diseases.  相似文献   

3.
4.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeats within the coding sequence of the ataxin-1 protein. In the present study, we used a conditional transgenic mouse model of SCA1 to investigate very early molecular and morphological changes related to the behavioral phenotype. In mice with neural deficits detected by rotarod performance, and simultaneous spatial impairments in exploratory activity and uncoordinated gait, we observed both significant altered expression and patchy distribution of excitatory amino acids transporter 1. The molecular changes observed in astroglial compartments correlate with changes in synapse morphology; synapses have a dramatic reduction of the synaptic area external to the postsynaptic density. By contrast, Purkinje cells demonstrate preserved structure. In addition, severe reactive astrocytosis matches changes in the glial glutamate transporter and synapse morphology. We propose these morpho-molecular changes are the cause of altered synaptic transmission, which, in turn, determines the onset of the neurological symptoms by altering the synaptic transmission in the cerebellar cortex of transgenic animals. This model might be suitable for testing drugs that target activated glial cells in order to reduce CNS inflammation.  相似文献   

5.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is associated with an elongated polyglutamine tract in ataxin-1, the SCA1 gene product. As summarized in this review, recent studies have clarified the molecular mechanisms of SCA1 pathogenesis and provided direction for future therapeutic approaches. The nucleus is the subcellular site where misfolded mutant ataxin-1 acts to cause SCA1 disease in the cerebellum. The role of these nuclear aggregates is the subject of intensive study. Additional proteins have been identified, whose conformational alterations occurring through interactions with the polyglutamine tract itself or non-polyglutamine regions in ataxin-1 are the cause of SCA-1 cytotoxicity. Therapeutic hope comes from the observations concerning the reduction of nuclear aggregation and alleviation of the pathogenic phenotype by the application of potent inhibitors and RNA interference.  相似文献   

6.
Spinocerebellar ataxia type 1 (SCA1) is a hereditary, progressive and fatal movement disorder that primarily affects the cerebellum. Non‐invasive imaging markers to detect early disease in SCA1 will facilitate testing and implementation of potential therapies. We have previously demonstrated the sensitivity of neurochemical levels measured by 1H magnetic resonance spectroscopy (MRS) to progressive neurodegeneration using a transgenic mouse model of SCA1. In order to investigate very early neurochemical changes related to neurodegeneration, here we utilized a knock‐in mouse model, the Sca1154Q/2Q line, which displays milder cerebellar pathology than the transgenic model. We measured cerebellar neurochemical profiles of Sca1154Q/2Q mice and wild‐type littermates using 9.4T MRS at ages 6, 12, 24, and 39 weeks and assessed the cerebellar pathology of a subset of the mice at each time point. The Sca1154Q/2Q mice displayed very mild cerebellar pathology even at 39 weeks, however, were distinguished from wild types by MRS starting at 6 weeks. Taurine and total choline levels were significantly lower at all ages and glutamine and total creatine levels were higher starting at 12 weeks in Sca1154Q/2Q mice than controls, demonstrating the sensitivity of neurochemical levels to neurodegeneration related changes in the absence of overt pathology.

  相似文献   


7.
Spinocerebellar ataxia type 7 (SCA7) is one member of a growing list of neurodegenerative disorders that are all caused by CAG repeat expansions that produce disease by encoding elongated polyglutamine tracts in a variety of apparently unrelated proteins. In this review, we provide an overview of our efforts to determine the molecular basis of polyglutamine neurotoxicity in SCA7 by modeling this polyglutamine repeat disorder in mice. We discuss how our SCA7 mouse model develops a phenotype that is reminiscent of the retinal and cerebellar disease pathology seen in human patients. All of these findings are considered in the context of numerous other models of polyglutamine disease pathology in mice and other organisms, together with various other in vitro and biochemical studies. We present the competing hypotheses of polyglutamine disease pathogenesis, and explain how our studies of SCA7 brainstem and retinal degeneration using this mouse model have yielded insights into possible mechanisms and pathways of polyglutamine disease pathology. In addition to illustrating how our SCA7 mouse model has allowed us to develop and advance notions of disease pathogenesis, we propose a model of polyglutamine molecular pathology that attempts to integrate the key observations in the field. We close by describing why our SCA7 mouse model should be useful for the next phase of polyglutamine disease research--the development of therapies, and predict that this stage of experimentation will continue to rely heavily on the mouse.  相似文献   

8.
We investigated the role of Ras in vascular endothelial growth factor (VEGF)-mediated signal transduction and the promotion of angiogenic changes primary endothelial cells. We find that VEGF potently induces Ras activation and that this step is essential for the stimulation by VEGF of several cellular changes associated with angiogenesis, including proliferation, migration, and branching morphogenesis in three-dimensional culture. Inhibition of Ras signaling induced subtle changes in the actin architecture but had no effect on the phosphatidylinositol 3-kinase (PI3K) or p38 signaling pathways. In contrast, activation of ERK was largely dependent on Ras. Although inhibiting ERK activity completely suppressed cell proliferation and partially blocked in vitro differentiation, neither ERK nor PI3K activity was required for VEGF-induced migration. These data provide the first direct demonstration that inhibition of Ras signal transduction is anti-angiogenic. Interestingly, VEGF signal transduction bifurcates both upstream and downstream of Ras, with different Ras-dependent signals controlling endothelial cell proliferation and migration, essential components of the angiogenic response.  相似文献   

9.
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited disorder characterized by progressive loss of coordination, motor impairment and the degeneration of cerebellar Purkinje cells, spinocerebellar tracts and brainstem nuclei. Many dominantly inherited neurodegenerative diseases share the mutational basis of SCA1: the expansion of a translated CAG repeat coding for glutamine. Mice lacking ataxin-1 display learning deficits and altered hippocampal synaptic plasticity but none of the abnormalities seen in human SCA1; mice expressing ataxin-1 with an expanded CAG tract (82 glutamine residues), however, develop Purkinje cell pathology and ataxia. These results suggest that mutant ataxin-1 gains a novel function that leads to neuronal degeneration. This novel function might involve aberrant interaction(s) with cell-specific protein(s), which in turn might explain the selective neuronal pathology. Mutant ataxin-1 interacts preferentially with a leucine-rich acidic nuclear protein that is abundantly expressed in cerebellar Purkinje cells and other brain regions affected in SCA1. Immunolocalization studies in affected neurons of patients and SCA1 transgenic mice showed that mutant ataxin-1 localizes to a single, ubiquitin-positive nuclear inclusion (NI) that alters the distribution of the proteasome and certain chaperones. Further analysis of NIs in transfected HeLa cells established that the proteasome and chaperone proteins co-localize with ataxin-1 aggregates. Moreover, overexpression of the chaperone HDJ-2/HSDJ in HeLa cells decreased ataxin-1 aggregation, suggesting that protein misfolding might underlie NI formation. To assess the importance of the nuclear localization of ataxin-1 and its role in SCA1 pathogenesis, two lines of transgenic mice were generated. In the first line, the nuclear localization signal was mutated so that full-length mutant ataxin-1 would remain in the cytoplasm; mice from this line did not develop any ataxia or pathology. This suggests that mutant ataxin-1 is pathogenic only in the nucleus. To assess the role of the aggregates, transgenic mice were generated with mutant ataxin-1 without the self-association domain (SAD) essential for aggregate formation. These mice developed ataxia and Purkinje cell abnormalities similar to those seen in SCA1 transgenic mice carrying full-length mutant ataxin-1, but lacked NIs. The nuclear milieu is thus a critical factor in SCA1 pathogenesis, but large NIs are not needed to initiate pathogenesis. They might instead be downstream of the primary pathogenic steps. Given the accumulated evidence, we propose the following model for SCA1 pathogenesis: expansion of the polyglutamine tract alters the conformation of ataxin-1, causing it to misfold. This in turn leads to aberrant protein interactions. Cell specificity is determined by the cell-specific proteins interacting with ataxin-1. Submicroscopic protein aggregation might occur because of protein misfolding, and those aggregates become detectable as NIs as the disease advances. Proteasome redistribution to the NI might contribute to disease progression by disturbing proteolysis and subsequent vital cellular functions.  相似文献   

10.
Spinocerebellar ataxia type 7 (SCA7) is caused by a toxic polyglutamine (polyQ) expansion in the N-terminus of the protein ataxin-7. Ataxin-7 has a known function in the histone acetylase complex, Spt/Ada/Gcn5 acetylase (STAGA) chromatin-remodeling complex. We hypothesized that some histone deacetylase (HDAC) family members would impact the posttranslational modification of normal and expanded ataxin-7 and possibly modulate ataxin-7 function or neurotoxicity associated with the polyQ expansion. Interestingly, when we coexpressed each HDAC family member in the presence of ataxin-7 we found that HDAC3 increased the posttranslational modification of normal and expanded ataxin-7. Specifically, HDAC3 stabilized ataxin-7 and increased modification of the protein. Further, HDAC3 physically interacts with ataxin-7. The physical interaction of HDAC3 with normal and polyQ-expanded ataxin-7 affects the toxicity in a polyQ-dependent manner. We detect robust HDAC3 expression in neurons and glia in the cerebellum and an increase in the levels of HDAC3 in SCA7 mice. Consistent with this we found altered lysine acetylation levels and deacetylase activity in the brains of SCA7 transgenic mice. This study implicates HDAC3 and ataxin-7 interaction as a target for therapeutic intervention in SCA7, adding to a growing list of neurodegenerative diseases that may be treated by HDAC inhibitors.  相似文献   

11.
Vascular endothelial growth factor (VEGF) is a pluripotent growth and permeability factor that has a broad impact on endothelial cell function. The lung tissue is very rich in this protein; many different lung cells produce VEGF and also respond to VEGF. VEGF is critical for the development of the lung and serves as a maintenance factor during adult life. In addition to the physiological functions of this protein, there is increasing evidence that VEGF also plays a role in several acute and chronic lung diseases, such as acute lung injury, severe pulmonary hypertension, and emphysema. Here we provide a comprehensive overview of the rapidly expanding literature.  相似文献   

12.
A simulation model has been developed for predicting the distribution of trinucleotide repeat expansion diseases in human populations. The interface of the software used to run this model presents the options for simulating natural reproduction of a population, with the population demographic parameters taken into account, and for simulating the appearance of a dynamic mutation in populations, transmission of the mutant gene from parents to offspring, and the effect of the phenotypic expression of the disease (the patients’ life expectancy and birthrate) on the transmission of the mutant allele in the patients’ families and its accumulation in the population.  相似文献   

13.
The tight-skin (TSK/+) mouse, a genetic model of systemic sclerosis (SSc), develops cutaneous fibrosis and defects in pulmonary architecture. Because hepatocyte growth factor (HGF) is an important mitogen and morphogen that contributes to the repair process after tissue injury, we investigated the role of HGF in cutaneous fibrosis and pulmonary architecture defects in SSc using TSK/+ mice. TSK/+ mice were injected in the gluteal muscle with either hemagglutinating virus of Japan (HVJ) liposomes containing 8 μg of a human HGF expression vector (HGF-HVJ liposomes) or a mock vector (untreated control). Gene transfer was repeated once weekly for 8 weeks. The effects of HGF gene transfection on the histopathology and expression of tumor growth factor (TGF)-β and IL-4 mRNA in TSK/+ mice were examined. The effect of recombinant HGF on IL-4 production by TSK/+ CD4+ T cells stimulated by allogeneic dendritic cells (DCs) in vitro was also examined. Histologic analysis revealed that HGF gene transfection in TSK/+ mice resulted in a marked reduction of hypodermal thickness, including the subcutaneous connective tissue layer. The hypodermal thickness of HGF-treated TSK/+ mice was decreased two-fold to three-fold compared with untreated TSK/+ mice. However, TSK/+ associated defects in pulmonary architecture were unaffected by HGF gene transfection. HGF gene transfection significantly inhibited the expression of IL-4 and TGF-β1 mRNA in the spleen and skin but not in the lung. We also performed a mixed lymphocyte culture and examined the effect of recombinant HGF on the generation of IL-4. Recombinant HGF significantly inhibited IL-4 production in TSK/+ CD4+ T cells stimulated by allogeneic DCs. HGF gene transfection inhibited IL-4 and TGF-β mRNA expression, which has been postulated to have a major role in fibrinogenesis and reduced hypodermal thickness, including the subcutaneous connective tissue layer of TSK/+ mice. HGF might represent a novel strategy for the treatment of SSc.  相似文献   

14.
The tight-skin (TSK/+) mouse, a genetic model of systemic sclerosis (SSc), develops cutaneous fibrosis and defects in pulmonary architecture. Because hepatocyte growth factor (HGF) is an important mitogen and morphogen that contributes to the repair process after tissue injury, we investigated the role of HGF in cutaneous fibrosis and pulmonary architecture defects in SSc using TSK/+ mice. TSK/+ mice were injected in the gluteal muscle with either hemagglutinating virus of Japan (HVJ) liposomes containing 8 mug of a human HGF expression vector (HGF-HVJ liposomes) or a mock vector (untreated control). Gene transfer was repeated once weekly for 8 weeks. The effects of HGF gene transfection on the histopathology and expression of tumor growth factor (TGF)-beta and IL-4 mRNA in TSK/+ mice were examined. The effect of recombinant HGF on IL-4 production by TSK/+ CD4+ T cells stimulated by allogeneic dendritic cells (DCs) in vitro was also examined. Histologic analysis revealed that HGF gene transfection in TSK/+ mice resulted in a marked reduction of hypodermal thickness, including the subcutaneous connective tissue layer. The hypodermal thickness of HGF-treated TSK/+ mice was decreased two-fold to three-fold compared with untreated TSK/+ mice. However, TSK/+ associated defects in pulmonary architecture were unaffected by HGF gene transfection. HGF gene transfection significantly inhibited the expression of IL-4 and TGF-beta1 mRNA in the spleen and skin but not in the lung. We also performed a mixed lymphocyte culture and examined the effect of recombinant HGF on the generation of IL-4. Recombinant HGF significantly inhibited IL-4 production in TSK/+ CD4+ T cells stimulated by allogeneic DCs. HGF gene transfection inhibited IL-4 and TGF-beta mRNA expression, which has been postulated to have a major role in fibrinogenesis and reduced hypodermal thickness, including the subcutaneous connective tissue layer of TSK/+ mice. HGF might represent a novel strategy for the treatment of SSc.  相似文献   

15.
Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative diseases caused by the expansion of a CAG trinucleotide repeat encoding a polyglutamine tract. SCA1 patients lose motor coordination and develop slurred speech, spasticity, and cognitive impairments. Difficulty with coordinating swallowing and breathing eventually causes death. Genetic evidence indicates that the disease mutation induces a toxic gain of function in the SCA1 encoded protein ATXN1. The discovery that residues in ATXN1 outside of the polyglutamine tract are crucial for pathogenesis hinted that alterations in the normal function of this protein are linked to its toxicity. Biochemical and genetic studies provide evidence that the polyglutamine expansion enhances interactions that are normally regulated by phosphorylation at Ser(776) and a subsequent alteration in its interaction with other cellular proteins. Moreover, the finding that other ATXN1 interactions are decreased in disease suggests that the polyglutamine expansion contributes to disease by both a gain-of-function mechanism and partial loss of function.  相似文献   

16.
17.
Abstract

Spinocerebellar ataxia type 2 (SCA2) is a redox-sensitive neurodegenerative disease affecting the cerebellum, fibre connections in the cerebellum, the peripheral nervous system, and extracerebellar central pathways. Currently, Cuba has the highest reported global rate for this disease. The aim of this review article is to summarize and discuss the current knowledge about evidence of oxidative stress during SCA2. Recent reports have suggested that ataxin 2 and other related factors contribute to the redox imbalance in this disease. It is important to recognize and clarify the molecular mechanisms associated with the redox imbalance to consider ataxias innovative approaches to counteract oxidative stress-induced tissue damage, through alternative therapeutic or nutritional intervention in SCA2 and related diseases.  相似文献   

18.
The dominant polyglutamine expansion diseases, which include spinocerebellar ataxia type 1 (SCA1) and Huntington disease, are progressive, untreatable, neurodegenerative disorders. In inducible mouse models of SCA1 and Huntington disease, repression of mutant allele expression improves disease phenotypes. Thus, therapies designed to inhibit expression of the mutant gene would be beneficial. Here we evaluate the ability of RNA interference (RNAi) to inhibit polyglutamine-induced neurodegeneration caused by mutant ataxin-1 in a mouse model of SCA1. Upon intracerebellar injection, recombinant adeno-associated virus (AAV) vectors expressing short hairpin RNAs profoundly improved motor coordination, restored cerebellar morphology and resolved characteristic ataxin-1 inclusions in Purkinje cells of SCA1 mice. Our data demonstrate in vivo the potential use of RNAi as therapy for dominant neurodegenerative disease.  相似文献   

19.
A hallmark feature of Williams-Beuren Syndrome (WBS) is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX)-mediated oxidative stress. DD mice, carrying a 0.67 Mb heterozygous deletion including the Eln gene, presented with a generalized arteriopathy, hypertension, and cardiac hypertrophy, associated with elevated angiotensin II (angII), oxidative stress parameters, and Ncf1 expression. Genetic (by crossing with Ncf1 mutant) and/or pharmacological (with ang II type 1 receptor blocker, losartan, or NOX inhibitor apocynin) reduction of NOX activity controlled hormonal and biochemical parameters in DD mice, resulting in normalized blood pressure and improved cardiovascular histology. We provide strong evidence for implication of the redox system in the pathophysiology of the cardiovascular disease in a mouse model of WBS. The phenotype of these mice can be ameliorated by either genetic or pharmacological intervention reducing NOX activity, likely through reduced angII-mediated oxidative stress. Therefore, anti-NOX therapy merits evaluation to prevent the potentially serious cardiovascular complications of WBS, as well as in other cardiovascular disorders mediated by similar pathogenic mechanism.  相似文献   

20.

Background

Autosomal dominant spinocerebellar ataxia type 1 is an adult onset progressive disorder with well characterized neurodegeneration in the cerebellum and brainstem. Beyond brain atrophy, few data exist concerning retinal and optic nerve involvement.

Objective

To evaluate retinal changes in SCA1 patients compared to age and gender matched healthy controls.

Methodology/Principal Findings

Nine patients with SCA1 were prospectively recruited from the ataxia clinic and were compared to nine age and gender matched healthy controls. Both cohorts received assessment of visually evoked potentials and eye examination by optical coherence tomography to determine retinal nerve fiber layer thickness and total macular volume. While no differences were found in visually evoked potentials, SCA1 patients showed a significant reduction of mean retinal nerve fiber layer thickness (RNFLT) compared to healthy controls (84±13 µm vs. 97±8 µm, p = 0.004). Temporal areas showed the most prominent RNFLT reduction with high statistical significances (temporal-inferior: p<0.001, temporal: p<0.001, temporal-superior: p = 0.005) whereas RNFLT in nasal areas was in the range of the control group. From six SCA1 patients an additional macular scan was obtained. The comparison to the corresponding healthy control showed a slight but not significant reduction in TMV (8.22±0.68 mm3 vs. 8.61±0.41 mm3, p = 0.15).

Conclusion

In SCA1 patients, we found evidence for degeneration of retinal nerve fibers. The temporal focus of the observed retinal nerve fiber layer reduction suggests an involvement of the papillo-macular bundle which resembles pathology found in toxic or mitochondrial optic nerve disease such as Leber''s hereditary optic neuropathy (LHON) or dominant optic atrophy (DOA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号