首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When neutrophils ingest bacteria, they discharge superoxide and myeloperoxidase into phagosomes. Both are essential for killing of the phagocytosed micro-organisms. It is generally accepted that superoxide is a precursor of hydrogen peroxide which myeloperoxidase uses to oxidize chloride to hypochlorous acid. Previously, we demonstrated that superoxide modulates the chlorination activity of myeloperoxidase by reacting with its ferric and compound II redox states. In this investigation we used pulse radiolysis to determine kinetic parameters of superoxide reacting with redox forms of myeloperoxidase and used these data in a steady-state kinetic analysis. We provide evidence that superoxide reacts with compound I and compound III. Our estimates of the rate constants for the reaction of superoxide with compound I, compound II, and compound III are 5 x 10(6) M-1 s-1, 5.5 +/- 0.4 x 10(6) M-1 s-1, and 1.3 +/- 0.2 x 10(5) M-1 s-1, respectively. These reactions define new activities for myeloperoxidase. It will act as a superoxide dismutase when superoxide reacts consecutively with ferric myeloperoxidase and compound III. It will also act as a superoxidase by using hydrogen peroxide to oxidize superoxide via compound I and compound II. The favorable kinetics of these reactions indicate that, within the confines of a phagosome, superoxide will react with myeloperoxidase and affect the reactions it will catalyze. These interactions of superoxide and myeloperoxidase will have a major influence on the way neutrophils use oxygen to kill bacteria. Consequently, superoxide should be viewed as a cosubstrate that myeloperoxidase uses to elicit bacterial killing.  相似文献   

2.
The ability of myeloperoxidase (MPO) and horseradish peroxidase (HRP) to induce chemiluminescence (CL) in Pholasin (Knight Scientific, Plymouth, UK), the photoprotein of the Common Piddock Pholas dactylus, was studied. The oxidation of Pholasin by compound I or II of HRP induced an intense light emission, whereas native HRP showed only a small effect. The luminescence observed upon incubation of Pholasin with native MPO was diminished by preincubation with catalase. Considering the high instability of diluted MPO, it is concluded that traces of hydrogen peroxide in water converted MPO to its active forms, compound I and/or II, which are able to oxidize Pholasin. Indeed, the addition of hydrogen peroxide to a mixture of MPO and Pholasin induced an intense burst of light. This emission was enhanced in degree and duration in the absence of chloride. Hypochlorous acid, the reaction product of Cl(-) and compound I of MPO, was itself able to elicit a luminescent response in Pholasin and this luminescence was strongly inhibited by methionine and taurine. However, both of these HOCl scavengers only slightly reduced the light emission induced by MPO/H(2)O(2) in both the presence or absence of chloride. Thus, hypochlorous acid produced by the MPO/H(2)O(2)/Cl(-) system, under the conditions described in this study, did not contribute to Pholasin luminescence. The Pholasin luminescence elicited by formyl-leucyl-methionyl-phenylalanine (fMLP)-stimulated neutrophils depends both on superoxide anion radicals and higher oxidation states of myeloperoxidase (but not on hypochlorous acid). This is shown by the inhibition of luminescence with superoxide dismutase and potassium cyanide, together with the lack of effect of both methionine and taurine. The luminescence response is about eight times greater in cells stimulated with fMLP/cytochalasin B than with fMLP alone.  相似文献   

3.
The standard reduction potential of the redox couple compound I/native enzyme has been determined for human myeloperoxidase (MPO) and eosinophil peroxidase (EPO) at pH 7.0 and 25 degrees C. This was achieved by rapid mixing of peroxidases with either hydrogen peroxide or hypochlorous acid and measuring spectrophotometrically concentrations of the reacting species and products at equilibrium. By using hydrogen peroxide, the standard reduction potential at pH 7.0 and 25 degrees C was 1.16 +/- 0.01 V for MPO and 1.10 +/- 0.01 V for EPO, independently of the concentration of hydrogen peroxide and peroxidases. In the case of hypochlorous acid, standard reduction potentials were dependent on the hypochlorous acid concentration used. They ranged from 1.16 V at low hypochlorous acid to 1.09 V at higher hypochlorous acid for MPO and from 1.10 V to 1.03 V for EPO. Thus, consistent results for the standard reduction potentials of redox couple compound I/native enzyme of both peroxidases were obtained with all hydrogen peroxide and at low hypochlorous acid concentrations: possible reasons for the deviation at higher concentrations of hypochlorous acid are discussed. They include instability of hypochlorous acid, reactions of hypochlorous acid with different amino-acid side chains in peroxidases as well as the appearance of a compound I-chloride complex.  相似文献   

4.
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.  相似文献   

5.
Kettle AJ  Winterbourn CC 《Biochemistry》2001,40(34):10204-10212
The predominant physiological activity of myeloperoxidase is to convert hydrogen peroxide and chloride to hypochlorous acid. However, this neutrophil enzyme also degrades hydrogen peroxide to oxygen and water. We have undertaken a kinetic analysis of this reaction to clarify its mechanism. When myeloperoxidase was added to hydrogen peroxide in the absence of reducing substrates, there was an initial burst phase of hydrogen peroxide consumption followed by a slow steady state loss. The kinetics of hydrogen peroxide loss were precisely mirrored by the kinetics of oxygen production. Two mols of hydrogen peroxide gave rise to 1 mol of oxygen. With 100 microM hydrogen peroxide and 6 mM chloride, half of the hydrogen peroxide was converted to hypochlorous acid and the remainder to oxygen. Superoxide and tyrosine enhanced the steady-state loss of hydrogen peroxide in the absence of chloride. We propose that hydrogen peroxide reacts with the ferric enzyme to form compound I, which in turn reacts with another molecule of hydrogen peroxide to regenerate the native enzyme and liberate oxygen. The rate constant for the two-electron reduction of compound I by hydrogen peroxide was determined to be 2 x 10(6) M(-1) s(-1). The burst phase occurs because hydrogen peroxide and endogenous donors are able to slowly reduce compound I to compound II, which accumulates and retards the loss of hydrogen peroxide. Superoxide and tyrosine drive the catalase activity because they reduce compound II back to the native enzyme. The two-electron oxidation of hydrogen peroxide by compound I should be considered when interpreting mechanistic studies of myeloperoxidase and may influence the physiological activity of the enzyme.  相似文献   

6.
The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1 x 10(7) M(-1)s(-1) (pH 5), 2.0 x 10(8) M(-1)s(-1) (pH 7) and 2.0 x 10(6) M(-1)s(-1) (pH 9) at 15 degrees C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

7.
The neutrophil enzyme myeloperoxidase catalyzes the oxidation of tyrosine to tyrosyl radicals, which cross-link to proteins and initiate lipid peroxidation. Tryptophan is present in plasma at about the same concentration as tyrosine and has a similar one-electron reduction potential. In this investigation, we have determined the ability of myeloperoxidase to catalyze the oxidation of tryptophan to assess whether or not this reaction may contribute to oxidative stress at sites of inflammation. We show that tryptophan is a poor substrate for myeloperoxidase because, even though it reacts rapidly with compound I (kI 2.1 x 10(6) M(-1)s(-1)), it reacts sluggishly with compound II (kII 7 M(-1)s(-1)). Tryptophan reversibly inhibited production of hypochlorous acid by purified myeloperoxidase by converting the enzyme to a mixture of compound II and compound III. It gave 50% inhibition (I50) at a concentration of 2 microM. In contrast, it was an ineffective inhibitor of hypochlorous acid production by human neutrophils (I50 80 microM) unless superoxide dismutase was present (I50 5 microM). We propose that compound I of myeloperoxidase will oxidize tryptophan at sites of inflammation. Enzyme turnover will result from the reaction of superoxide or tyrosine with compound II. Thus, tryptophan radicals are potential candidates for exacerbating oxidative stress during inflammation.  相似文献   

8.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.  相似文献   

9.
The nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of inflammation by mechanisms that are not completely understood. MPO (myeloperoxidase), which plays a fundamental role in oxidant production by neutrophils, is an important target for anti-inflammatory action. By amplifying the oxidative potential of H2O2, MPO produces hypochlorous acid and radicals through the oxidizing intermediates MPO-I [MPO-porphyrin?+-Fe(IV)=O] and MPO-II [MPO-porphyrin-Fe(IV)=O]. Previously, we reported that tempol reacts with MPO-I and MPO-II with second-order rate constants similar to those of tyrosine. However, we noticed that tempol inhibits the chlorinating activity of MPO, in contrast with tyrosine. Thus we studied the inhibition of MPO-mediated taurine chlorination by tempol at pH 7.4 and re-determined the kinetic constants of the reactions of tempol with MPO-I (k=3.5×105 M-1·s-1) and MPO-II, the kinetics of which indicated a binding interaction (K=2.0×10-5 M; k=3.6×10-2 s-1). Also, we showed that tempol reacts extremely slowly with hypochlorous acid (k=0.29 and 0.054 M-1·s-1 at pH 5.4 and 7.4 respectively). The results demonstrated that tempol acts mostly as a reversible inhibitor of MPO by trapping it as MPO-II and the MPO-II-tempol complex, which are not within the chlorinating cycle. After turnover, a minor fraction of MPO is irreversibly inactivated, probably due to its reaction with the oxammonium cation resulting from tempol oxidation. Kinetic modelling indicated that taurine reacts with enzyme-bound hypochlorous acid. Our investigation complements a comprehensive study reported while the present study was underway  相似文献   

10.
Spectral-scan results obtained on the millisecond time scale are reported for reactions of chloroperoxidase with peracetic acid and chloride ion in both the presence and the absence of monochlorodimedone. A multimixing experiment is performed in which stoichiometric amounts of chloroperoxidase and peracetic acid are premixed for 0.7 s before the resultant compound I is reacted with chloride ion. The combined results show that the only detectable enzyme intermediate species is compound I (except in very late stages of the reaction), that the disappearance of compound I is accelerated by the presence of chloride ion, and that it is further accelerated if both chloride and monochlorodimedone are present. It is concluded that compound I is an obligate intermediate species in the reaction. Experiments are performed on the reaction of monochlorodimedone with hypochlorous acid in both the presence and the absence of added chloride ion, but in the absence of chloroperoxidase. The presence of chloride ion greatly accelerates the reaction rate apparently by setting off a chlorine chain reaction. This reaction would be important in the enzyme-catalyzed reaction if hypochlorous acid were liberated into the solution. A careful analysis of steady-state kinetic results shows that in the chlorination of monochlorodimedone at least, liberation of free hypochlorous acid is not important in the enzyme-catalyzed pathway. Rather the reaction proceeds from compound I to formation of iron(III)-OCl by chloride ion addition to the ferryl oxygen atom. This obligate intermediate species then chlorinates the substrate. It is well described as enzyme-activated hypochlorous acid, in which replacement of the proton in HOCl by the heme iron ion produces a Cl+ species of great potency. Thus the enzyme controls chlorination of monochlorodimedone rather than unleashing an uncontrolled chain reaction in which it would be rapidly destroyed.  相似文献   

11.
Abstract

The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1×107 M-1s-1 (pH 5), 2.0×108 M-1s-1 (pH 7) and 2.0×106 M-1s-1 (pH 9) at 15°C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

12.
Myeloperoxidase (MPO) is a prime candidate for mediating the inflammatory tissue damage of neutrophils because it converts Cl- to the potent oxidant hypochlorous acid. It also oxidizes xenobiotics to reactive free radicals. We have found that the kinetics of oxidation of hydroquinone by myeloperoxidase are inadequately explained by the classical peroxidase mechanism. Peroxidation of hydroquinone displayed a distinct lag phase, which was practically abolished by excluding O2 and was eliminated by adding benzoquinone at the start of the reaction. Superoxide dismutase increased the rate of peroxidation by 40% but did not eliminate the lag phase. Spectral investigations revealed that during the initial phase of the reaction, MPO was converted to oxy-MPO, or compound III, by a mechanism that was not reliant on superoxide. Benzosemiquinone, however, was able to convert ferric-MPO to compound III. Both compound III and ferro-MPO reacted with benzoquinone to regenerate ferric-MPO. We propose that the lag phase occurs because benzosemiquinone reduces ferric-MPO to ferro-MPO, which rapidly binds O2 to form compound III. Since compound III is outside the peroxidation cycle, conversion of hydroquinone to benzoquinone is retarded. However, as benzoquinone accumulates, it oxidizes ferro-MPO and compound III to ferric-MPO, thereby increasing the rate of peroxidation. There is a minimal lag phase under an atmosphere of N2 because ferro-MPO would be rapidly oxidized by benzoquinone, without formation of compound III. We conclude that when substrates produce radicals capable of reducing ferric-MPO, they will be peroxidized efficiently only if oxy-MPO is readily recycled. Furthermore, these radicals will prevent MP3+ from reacting with H2O2, and thereby prevent the enzyme from oxidizing Cl- to hypochlorous acid. Thus, this mechanism could be exploited to prevent hypochlorous acid-mediated inflammatory tissue damage.  相似文献   

13.
The reaction of native myeloperoxidase (MPO) and its redox intermediate compound I with hydrogen peroxide, ethyl hydroperoxide, peroxyacetic acid, t-butyl hydroperoxide, 3-chloroperoxybenzoic acid and cumene hydroperoxide was studied by multi-mixing stopped-flow techniques. Hydroperoxides are decomposed by MPO by two mechanisms. Firstly, the hydroperoxide undergoes a two-electron reduction to its corresponding alcohol and heme iron is oxidized to compound I. At pH 7 and 15 degrees C, the rate constant of the reaction between 3-chloroperoxybenzoic acid and ferric MPO was similar to that with hydrogen peroxide (1.8x10(7) M(-1) s(-1) and 1.4x10(7) M(-1) s(-1), respectively). With the exception of t-butyl hydroperoxide, the rates of compound I formation varied between 5.2x10(5) M(-1) s(-1) and 2.7x10(6) M(-1) s(-1). Secondly, compound I can abstract hydrogen from these peroxides, producing peroxyl radicals and compound II. Compound I reduction is shown to be more than two orders of magnitude slower than compound I formation. Again, with 3-chloroperoxybenzoic acid this reaction is most effective (6. 6x10(4) M(-1) s(-1) at pH 7 and 15 degrees C). Both reactions are controlled by the same ionizable group (average pK(a) of about 4.0) which has to be in its conjugated base form for reaction.  相似文献   

14.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

15.
The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso-PC in unsaturated phospholipids.  相似文献   

16.
The reaction of human myeloperoxidase with its product, hypochlorous acid was investigated using both rapid-scan spectrophotometry and the stopped-flow technique. In the reaction of myeloperoxidase with hypochlorous acid a primary compound is found with properties similar to that of compound I and which is converted into compound II. The primary reaction is strongly pH-dependent. At pH 7.2 the reaction is too fast to be measured but at higher pH values it is possible to determine the apparent second-order rate constant. Its value decreases to about 2 x 10(7) M-1.s-1 at pH 8.3 and to 2.3 (+/- 0.4) x 10(6) M-1.s-1 at pH 9.2, respectively. The dissociation constant for the formation of the primary compound is 25.7 (+/- 15.3) microM at pH 9.2 and about 2.5 microM at pH 8.3. The apparent second-order rate constant for the formation of compound II is hardly affected by pH and varies between 2 to 5 x 10(4) M-1.s-1 at pH 10.2 and pH 8.3, respectively. Reaction of myeloperoxidase with hypochlorous acid also resulted in irreversible partial bleaching of the chromophore. Chloride, which is a substrate of the enzyme not only protects myeloperoxidase against bleaching by hypochlorous acid but also competitively inhibits the binding of hypochlorous acid to myeloperoxidase, a process which also has been observed in the reaction with hydrogen peroxide. It is concluded that hypochlorous acid binds at the heme iron to form compound I.  相似文献   

17.
Recently, it was suggested that melatonin (N-acetyl-5-methoxytryptamine) is oxidized by activated neutrophils in a reaction most probably involving myeloperoxidase (Biochem. Biophys. Res. Commun. (2000) 279, 657-662). Myeloperoxidase (MPO) is the most abundant protein of neutrophils and is involved in killing invading pathogens. To clarify if melatonin is a substrate of MPO, we investigated the oxidation of melatonin by its redox intermediates compounds I and II using transient-state spectral and kinetic measurements at 25 degrees C. Spectral and kinetic analysis revealed that both compound I and compound II oxidize melatonin via one-electron processes. The second-order rate constant measured for compound I reduction at pH 7 and pH 5 are (6.1 +/- 0.2) x 10(6) M(-1) s(-1) and (1.0 +/- 0.08) x 10(7) M(-1) s(-1), respectively. The rates for the one-electron reduction of compound II back to the ferric enzyme are (9.6 +/- 0.3) x 10(2) M(-1) s(-1) (pH 7) and (2.2 +/- 0.1) x 10(3) M(-1) s(-1) (pH 5). Thus, melatonin is a much better electron donor for compound I than for compound II. Steady-state experiments showed that the rate of oxidation of melatonin is dependent on the H(2)O(2) concentration, is not affected by superoxide dismutase, and is quickly terminated by sodium cyanide. Melatonin can markedly inhibit the chlorinating activity of MPO at both pH 7 and pH 5. The implication of these findings in the activated neutrophil is discussed.  相似文献   

18.
The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I*, although at a slower rate than oxidation of I by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe-HOCl or X-HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the nonenzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria: [reaction: see text] The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

19.
Abstract

The neutrophil enzyme myeloperoxidase catalyzes the oxidation of tyrosine to tyrosyl radicals, which cross-link to proteins and initiate lipid peroxidation. Tryptophan is present in plasma at about the same concentration as tyrosine and has a similar one-electron reduction potential. In this investigation, we have determined the ability of myeloperoxidase to catalyze the oxidation of tryptophan to assess whether or not this reaction may contribute to oxidative stress at sites of inflammation. We show that tryptophan is a poor substrate for myeloperoxidase because, even though it reacts rapidly with compound I (kI 2.1×106 M-1s-1), it reacts sluggishly with compound II (kII 7 M-1s-1). Tryptophan reversibly inhibited production of hypochlorous acid by purified myeloperoxidase by converting the enzyme to a mixture of compound II and compound III. It gave 50% inhibition (I50) at a concentration of 2 µM. In contrast, it was an ineffective inhibitor of hypochlorous acid production by human neutrophils (I50 80 µM) unless superoxide dismutase was present (I50 5 µM). We propose that compound I of myeloperoxidase will oxidize tryptophan at sites of inflammation. Enzyme turnover will result from the reaction of superoxide or tyrosine with compound II. Thus, tryptophan radicals are potential candidates for exacerbating oxidative stress during inflammation.  相似文献   

20.
Ascorbic acid is known to stimulate leukocyte functions. In a recent publication it was suggested that the role of ascorbic acid is to reduce compound II of myeloperoxidase back to the native enzyme (Bolscher, B. G. J. M., Zoutberg, G. R., Cuperus, R. A., and Wever, R. (1984) Biochim. Biophys. Acta 784, 189-191). In this paper we report rapid spectral scan and transient state kinetic results on the reaction of three myeloperoxidase compounds II, namely, human neutrophil myeloperoxidase, canine myeloperoxidase, and bovine spleen heme protein with ascorbate. We show by rapid scan spectra that compound II does not pass through any other intermediate when ascorbic acid reduces it back to native form. We also show that the reactions of all three compounds II involve a simple binding interaction before enzyme reduction with an apparent dissociation constant of 6.3 +/- 0.9 x 10(-4) to 2.0 +/- 0.3 x 10(-3)M and a first-order rate constant for reduction of 12.6 +/- 0.6 to 18.8 +/- 1.3 s-1. The optimum pH is 4.5, and at this pH the activation energy for the reaction is 13.2 kJ mol-1. Results of this work lend further evidence that the spleen green heme protein is very similar if not identical to leukocyte myeloperoxidase based on a comparison of spectral scans, pH-rate profiles, and kinetic parameters. We demonstrate that chloride cannot reduce compound II whereas iodide reduces compound II to native enzyme at a rate comparable to that of ascorbate. This explains why ascorbate accelerates chlorination but inhibits iodination. Formation of compound II is a dead end for the generation of hypochlorous acid; ascorbate regenerates more native enzyme to enhance the chlorination reaction namely: myeloperoxidase + peroxide----compound I followed by compound I + chloride----HOCl. On the other hand, ascorbate is a competitor with iodide for both compounds I and II and so inhibits iodination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号