首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved.  相似文献   

2.
《Autophagy》2013,9(3):397-407
Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved.  相似文献   

3.
Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.  相似文献   

4.
Autophagy is an efficient way of degradation and removal of unwanted or damaged intracellular components in plant cells. It plays an important role in recycling of intracellular structures (during starvation, removal of cell components formed during plant development or damaged by various stress factors) and in programmed cell death. Morphologically, autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which are essential for the isolation and degradation of cytoplasmic components. Among autophagic (ATG) proteins, ATG8 from the ubiquitinlike protein family plays a key role in autophagosome formation. ATG8 is also involved in selective autophagy, fusion of autophagosome with the vacuole, and some other intracellular processes not associated with autophagy. In contrast to yeasts that carry a single ATG8 gene, plants have multigene ATG8 families. The reason for such great ATG8 diversity in plants remains unclear. It is also unknown whether all members of the ATG8 family are involved in the formation and functioning of autophagosomes. To answer these questions, the identification of the structure and the possible functions of plant proteins from ATG8 family is required. In this review, we analyze the structures of ATG8 proteins from plants and their homologs from yeast and animal cells, interactions of ATG8 proteins with functional ligands, and involvement of ATG8 proteins in different metabolic processes in eukaryotes.  相似文献   

5.
Autophagy is a highly conserved eukaryotic degradation process during which bulk cytoplasmic materials are transported by double-membrane autophagosomes into the vacuole for degradation. Methods of monitoring autophagy are indispensable in studying the mechanism and functions of autophagy. AuTophaGy-related protein 8 (ATG8) functions in autophagosome assembly by decorating on autophagic membranes, and the inner membrane-bound ATG8 proteins enter the vacuole via active autophagy flux. Fluorescence protein (FP)-tagged forms of ATG8 have been explored as visual markers to monitor autophagy in animals and several plant species. Here, we evaluated and modified this FP-ATG8-based autophagy monitoring method in wheat (Triticum aestivum L.) by fluorescence observation of green fluorescence protein (GFP)-tagged and Discosoma red fluorescent protein (DsRED)-tagged forms of one wheat ATG8, TaATG8h, in wheat mesophyll protoplasts. Under a nutrient-starvation condition, punctate GFP/DsRED- TaATG8h fluorescence representing autophagosomes was clearly observed in the cytoplasm. The accumulation of GFP-TaATG8h-labeled autophagosomes was impaired by the autophagosome biogenesis inhibitor 3-methyladenine but enhanced by the vacuolar degradation inhibitor concanamycin A. In addition, accumulated spreading fluorescence was observed in the vacuole, indicating active autophagy fluxes which led to continuous degradation of GFP/DsRED-TaATG8h fusions and release of protease-tolerant free GFP/DsRED proteins in the vacuole. To observe FP-tagged TaATG8h in other types of wheat cell, we also expressed GFP-TaATG8h in leaf epidermal cells. Consistent with its performance in protoplasts, GFP-TaATG8h showed punctate fluorescence representing autophagosomes in leaf epidermal cells. Taken together, our results proved the feasibility of using FP-tagged ATG8 to monitor both autophagosome accumulation and autophagy flux in living wheat cells.  相似文献   

6.
The homeostasis of cells depends on the selective degradation of damaged or superfluous cellular components. Autophagy is the major pathway that recognizes such components, sequesters them in de novo formed autophagosomes and delivers them to lysosomes for degradation. The recognition of specific cargo and the biogenesis of autophagosomes involve a dedicated machinery of autophagy related (ATG) proteins. Intense research over the past decades has revealed insights into the function of autophagy proteins and mechanisms that govern cargo recognition. Other aspects including the molecular mechanisms involved in the onset of human diseases are less well understood. However, autophagic dysfunctions, caused by age related decline in autophagy or mutations in ATG proteins, are directly related to a large number of human pathologies including neurodegenerative disorders. Here, we review most recent discoveries and breakthroughs in selective autophagy and its relationship to neurodegeneration.  相似文献   

7.
After ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella. Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10-30 kDa species released into culture supernatants by Type IV secretion-competent Legionella, as judged by the macrophages' processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella-permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases.  相似文献   

8.
Following the detection of cytosolic double-stranded DNA from viral or bacterial infection in mammalian cells, cyclic dinucleotide activation of STING induces interferon β expression to initiate innate immune defenses. STING activation also induces LC3B lipidation, a classical but equivocal marker of autophagy, that promotes a cell-autonomous antiviral response that arose before evolution of the interferon pathway. We report that STING activation induces LC3B lipidation onto single-membrane perinuclear vesicles mediated by ATG16L1 via its WD40 domain, bypassing the requirement of canonical upstream autophagy machinery. This process is blocked by bafilomycin A1 that binds and inhibits the vacuolar ATPase (V-ATPase) and by SopF, a bacterial effector that catalytically modifies the V-ATPase to inhibit LC3B lipidation via ATG16L1. These results indicate that activation of the cGAS-STING pathway induces V-ATPase–dependent LC3B lipidation that may mediate cell-autonomous host defense, an unanticipated mechanism that is distinct from LC3B lipidation onto double-membrane autophagosomes.  相似文献   

9.
Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector.  相似文献   

10.
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes.  相似文献   

11.
《Autophagy》2013,9(6):884-886
Autophagy is a process whose core machinery is highly conserved from yeast to higher eukaryotes and mammals. However it is becoming clear that multicellular organisms exhibit increased complexity of autophagic regulation and specialization of the non-core apparatus to perform a number of different roles. Using the yeast interaction network as a scaffold we identified the 14 novel human proteins as putative autophagy-associatd proteins. We confirmed one of these, the F-BAR protein FNBP1L ,as being an ATG3 interactor. Using a functional siRNA approach we demonstrated that FNBP1L was essential for autophagy of internalized Salmonella Typhimurium, but dispensable for formation of classical autophagosomes. Our approach illustrates the level of conservation of the autophagy apparatus over large evolutionary distances, but also demonstrates that mammalian cells utilize different autophagy accessory molecules in specific contexts.  相似文献   

12.
《Autophagy》2013,9(10):1434-1447
An increasing number of studies demonstrate that autophagy, an intrinsic mechanism that can degrade cytoplasmic components, is involved in the infection processes of a variety of pathogens. It can be hijacked by various viruses to facilitate their replication. In this study, we found that PRRSV infection significantly increases the number of double- or single-membrane vesicles in the cytoplasm of host cells in ultrastructural analysis. Our results showed the LC3-I was converted into LC3-II after virus infection, suggesting the autophagy machinery was activated. We further used pharmacological agents and shRNAs to confirm that autophagy promoted the replication of PRRSV in host cells. Confocal microscopy analysis showed that PRRSV inhibited the fusion between autophagosomes and lysosomes, suggesting that PRRSV induced incomplete autophagy. This suppression caused the accumulation of autophagosomes which may serve as replication site to enhance PRRSV replication. It has been shown that NSP2 and NSP3 of arterivirus are two components of virus replication complex. We also found in our studies that NSP2 colocalized with LC3 in MARC-145 cells by performing confocal microscopy analysis and continuous density gradient centrifugation. Our studies presented here indicated that autophagy was activated during PRRSV infection and enhanced PRRSV replication in host cells by preventing autophagosome and lysosome fusion.  相似文献   

13.
《Autophagy》2013,9(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12–ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12–ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12–ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   

14.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

15.
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3‐associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3‐associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre‐initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post‐mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.  相似文献   

16.
Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi‐vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3‐positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3‐positive vacuole‐associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion.  相似文献   

17.
Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes.  相似文献   

18.
Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.  相似文献   

19.
Hantavirus glycoprotein precursor (GPC) is posttranslationally cleaved into two glycoproteins, Gn and Gc. Cells transfected with plasmids expressing either GPC or both Gn and Gc revealed that Gn is posttranslationally degraded. Treatment of cells with the autophagy inhibitors 3-methyladenine, LY-294002, or Wortmanin rescued Gn degradation, suggesting that Gn is degraded by the host autophagy machinery. Confocal microscopic imaging showed that Gn is targeted to autophagosomes for degradation by an unknown mechanism. Examination of autophagy markers LC3-I and LC3-II demonstrated that both Gn expression and Sin Nombre hantavirus (SNV) infection induce autophagy in cells. To delineate whether induction of autophagy and clearance of Gn play a role in the virus replication cycle, we downregulated autophagy genes BCLN-1 and ATG7 using small interfering RNA (siRNA) and monitored virus replication over time. These studies revealed that inhibition of host autophagy machinery inhibits Sin Nombre virus replication in cells, suggesting that autophagic clearance of Gn is required for efficient virus replication. Our studies provide mechanistic insights into viral pathogenesis and reveal that SNV exploits the host autophagy machinery to decrease the intrinsic steady-state levels of an important viral component for efficient replication in host cells.  相似文献   

20.
Autophagy is a well-known degradation system, induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. Recently, it was reported that autophagy is involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. In this study, we isolated the ATG8 gene homologue Aoatg8 from the filamentous fungus Aspergillus oryzae and visualized autophagy by the expression of DsRed2-AoAtg8 and enhanced green fluorescent protein-AoAtg8 fusion proteins in this fungus. While the fusion proteins were localized in dot structures which are preautophagosomal structure-like structures under normal growth conditions, starvation or rapamycin treatment caused their accumulation in vacuoles. DsRed2 expressed in the cytoplasm was also taken up into vacuoles under starvation conditions or during the differentiation of conidiophores and conidial germination. Deletion mutants of Aoatg8 did not form aerial hyphae and conidia, and DsRed2 was not localized in vacuoles under starvation conditions, indicating that Aoatg8 is essential for autophagy. Furthermore, Aoatg8 conditional mutants showed delayed conidial germination in the absence of nitrogen sources. These results suggest that autophagy functions in both the differentiation of aerial hyphae and in conidial germination in A. oryzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号