首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol–gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.  相似文献   

2.
3.
A series of quinoxalinone peptidomimetic derivatives was designed, synthesized, and assayed for their inhibitory activities on metalloproteinase-2 (MMP-2) and aminopeptidase N (APN). The results showed that all of these quinoxalinone derivatives displayed highly selective inhibition against MMP-2 as compared with APN, with IC50 values in the micromole range. Compound A3 showed comparable MMP-2 inhibitory activities than the positive control LY52, which might be used as a potential lead in future research on anticancer agents.  相似文献   

4.
Matrix metalloproteinase 9 (MMP-9) plays an important role in cancer invasion and metastasis and has been an attractive target for therapeutic intervention of cancer metastasis. However, considering the high cost and intricacy associated with the expression, isolation and purification of the recombinant enzyme for the screening of drug candidates, alternative methods that explore the recycling of enzymes become desirable. In this study, a new immobilized enzyme reactor (IMER) containing human recombinant MMP-9 enzyme was developed and characterized for the on-line screening of MMP-9 inhibitors. The MMP-9 IMER containing active unit of the enzyme (U = 0.08 μmol/min) on the disk was inserted into a HPLC system connected to a UV–vis detector for on-line chromatographic screening. The resulting conjugated enzyme was shown to be an active and stable catalyst for the hydrolysis of MMP-9 chromogenic thiopeptide substrate Ac-PLG-[2-mercapto-4-methyl-pentanoyl]-LG-OC2H5. The kinetics profile of the enzyme in IMER and free solution were determined and compared. Selected reversible MMP inhibitors, N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycyl hydroxamic acid (NNGH), doxycycline and minocycline were further characterized using the MMP-9 IMER and free enzyme solution assays. Our system demonstrated applicability as a rapid and cost-effective screening tool for inhibitors of the MMP-9 enzyme.  相似文献   

5.
A series of derivatives of 2,4- and 2,5-thiazolyl- or oxazolylbenzenesulphonamides has been prepared and evaluated as potential MMP inhibitors. The thiazole 15b have been found to exhibit MMP-2 and MMP-9 inhibitions higher than reference compounds GI 129471 and CGS 27023A.  相似文献   

6.
Nitrilases have found wide use in the pharmaceutical industry for the production of fine chemicals, and it is important to have a method by which to screen libraries of isolated or engineered nitrilase variants (including bacteria and fungi). The conventional methods, such as high-performance liquid chromatography, liquid chromatography-mass spectrometry, capillary electrophoresis, or gas chromatography, are tedious and time-consuming. Therefore, a direct and sensitive readout of the nitrilase's activity has to be considered. In this paper, we report a novel time-resolved luminescent probe: o-hydroxybenzonitrile derivatives could be applied to detect the activity of the nitrilases. By the action of nitrilases, o-hydroxybenzonitrile derivatives can be transformed to the corresponding salicylic acid derivatives, which, upon binding Tb(3+), serve as a photon antenna and sensitize Tb(3+) luminescence. Because of the time-resolved property of the luminescence, the background from the other proteins (especially in the fermentation system) in the assay could be reduced and, therefore, the sensitivity was increased. Moreover, because the detection was performed on a 96- or 384-well plate, the activity of the nitrilases from microorganisms could be determined quickly. Based on this strategy, the best fermentation conditions for nitrilase-producing strains were obtained.  相似文献   

7.
We describe a novel method, agrosuppression, that addresses the need for an assay of the hypersensitive response (HR) in intact plants that is rapid and adapted to high-throughput functional screening of plant and pathogen genes. The agrosuppression assay is based on inoculation of intact plants with a mixture of Agrobacterium tumefaciens strains carrying (i) a binary plasmid with one or more candidate HR-inducing genes and (ii) a tumor-inducing (oncogenic) T-DNA. In the absence of HR induction, tumor formation is initiated, resulting in a typical crown gall phenotype. However, upon induction of the HR, tumor formation by the oncogenic T-DNA is suppressed, resulting in a phenotype that can be readily scored. We tested and optimized agrosuppression in Nicotiana benthamiana using the inf1 elicitin gene from the oomycete pathogen Phytophthora infestans, which specifically induces the HR in Nicotiana spp., and the gene-for-gene pair Avr9/Cf-9 from the fungal pathogen Cladosporium fulvum and Lycopersicon pimpinellifolium (currant tomato), respectively. Agrosuppression protocols that can be rapidly performed using simple mechanical wounding of petioles of intact N. benthamiana plants were developed and appeared particularly adapted to intensive high-throughput screening. This assay promises to greatly facilitate the cloning of novel plant R genes and pathogen Avr genes and to accelerate functional analyses and structure-function studies of these genes.  相似文献   

8.
Fluorescence intensity of the pH-sensitive carboxyfluorescein derivative 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) was monitored by high-throughput flow cytometry in living yeast cells. We measured fluorescence intensity of BCECF trapped in yeast vacuoles, acidic compartments equivalent to lysosomes where vacuolar proton-translocating ATPases (V-ATPases) are abundant. Because V-ATPases maintain a low pH in the vacuolar lumen, V-ATPase inhibition by concanamycin A alkalinized the vacuole and increased BCECF fluorescence. Likewise, V-ATPase-deficient mutant cells had greater fluorescence intensity than wild-type cells. Thus, we detected an increase of fluorescence intensity after short- and long-term inhibition of V-ATPase function. We used yeast cells loaded with BCECF to screen a small chemical library of structurally diverse compounds to identify V-ATPase inhibitors. One compound, disulfiram, enhanced BCECF fluorescence intensity (although to a degree beyond that anticipated for pH changes alone in the mutant cells). Once confirmed by dose-response assays (EC50 = 26 μM), we verified V-ATPase inhibition by disulfiram in secondary assays that measured ATP hydrolysis in vacuolar membranes. The inhibitory action of disulfiram against V-ATPase pumps revealed a novel effect previously unknown for this compound. Because V-ATPases are highly conserved, new inhibitors identified could be used as research and therapeutic tools in cancer, viral infections, and other diseases where V-ATPases are involved.  相似文献   

9.
High-throughput screening (HTS) using high-density microplates is the primary method for the discovery of novel lead candidate molecules. However, new strategies that eschew 2D microplate technology, including technologies that enable mass screening of targets against large combinatorial libraries, have the potential to greatly increase throughput and decrease unit cost. This review presents an overview of state-of-the-art microplate-based HTS technology and includes a discussion of emerging miniaturized systems for HTS. We focus on new methods of encoding combinatorial libraries that promise throughputs of as many as 100,000 compounds per second.  相似文献   

10.
The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose–response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.  相似文献   

11.
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.  相似文献   

12.
We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologies.  相似文献   

13.
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has been shown to be involved in malignant tumor progression and therefore represents an attractive therapeutical target. In order to screen for ST3 synthetic inhibitors, we have produced and purified the catalytic domain of ST3, matrilysin, stromelysin-2, and membrane type-1 MMP from inclusion bodies in a bacterial system. Our strategy allowed the purification of MMPs directly in the active form, thereby avoiding in vitro activation. A total of 140,000 synthetic compounds from the Bristol-Myers Pharmaceutical Research Institute chemical deck were tested, using a substrate-based colorimetric enzymatic assay, in which ST3 activity was evaluated through its ability to cleave and inactivate alpha-1 proteinase inhibitor. One ST3 inhibitor belonging to the cephalosporin family of antibiotics was thereby identified.  相似文献   

14.
Generation of structurally new matrix metalloproteinase inhibitors was successfully carried out using an in silico technique. In order to identify the small fragment interacting with residues in the S1' pocket of MMP-1 through hydrogen bonds, we performed in silico screening using the LUDI program. As a result, acetyl-L-alanyl-(N-methyl)amide (Ac-L-Ala-NHMe) was selected to link with another fragment, hydroxamic acid that interacted with catalytic zinc. By this approach, the L-glutamic acid derivative 2b was discovered to be a new type of matrix metalloproteinase inhibitor. Further transformation to reduce its peptidic nature and improve activity yielded nonpeptidic lead compounds as inhibitors of MMP-1, -2, -3, and -9.  相似文献   

15.
16.
3,4-Dihydroxy-2-butanone 4-phosphate synthase, 6,7-dimethyl-8-ribityllumazine synthase, and riboflavin synthase of the riboflavin biosynthetic pathway are potential targets for novel antiinfective drugs. This article describes a platform for high-throughput screening for inhibitors of these enzymes. The assays can be monitored photometrically and have been shown to be robust, as indicated by Z factors 0.87. A (13)C NMR assay for hit verification of 3,4-dihydroxy-2-butanone 4-phosphate synthase inhibitors is also reported.  相似文献   

17.
Lo MK  Tilgner M  Shi PY 《Journal of virology》2003,77(23):12901-12906
Prevention and treatment of infection by West Nile virus (WNV) and other flaviviruses are public health priorities. We describe a reporting cell line that can be used for high-throughput screening of inhibitors against all targets involved in WNV replication. Dual reporter genes, encoding Renilla luciferase (Rluc) and neomycin phosphotransferase (Neo), were engineered into a WNV subgenomic replicon, resulting in Rluc/NeoRep. Geneticin selection of BHK-21 cells transfected with Rluc/NeoRep yielded a stable cell line that contains persistently replicating replicons. Incubation of the reporting cells with known WNV inhibitors decreased Rluc activity, as well as the replicon RNA level. The efficacies of the inhibitors, as measured by the depression of Rluc activity in the reporting cells, are comparable to those derived from authentic viral infection assays. Therefore, the WNV reporting cell line can be used as a high-throughput assay for anti-WNV drug discovery. A similar approach should be applicable to development of genetics-based antiviral assays for other flaviviruses.  相似文献   

18.
孟鹏  齐西珍  郑芳  任丽梅  白芳  白钢 《微生物学报》2010,50(8):1080-1086
【目的】针对人α-麦芽糖苷酶这个糖代谢途径中重要的靶蛋白,建立α-糖苷酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人α-麦芽糖苷酶。利用酶的催化特性建立α-糖苷酶抑制剂筛选模型。应用该模型对放线菌代谢产物库进行高通量筛选。通过构建16SrRNA系统发育树分析阳性菌株的分类地位。【结果】首次成功克隆、表达了具催化活性的人α-麦芽糖苷酶N端结构域。针对人α-麦芽糖苷酶N端催化结构域,建立α-糖苷酶抑制剂的筛选模型。对包含近2000株放线菌代谢产物的天然产物库进行高通量筛选,最终得到20株α-麦芽糖苷酶抑制剂生产菌株。其中19株放线菌为链霉菌属,且在分类学上具有丰富的多样性。【结论】本研究建立的α-糖苷酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型糖苷酶抑制剂类降糖药物的开发。  相似文献   

19.
Abstract

New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.  相似文献   

20.
The first example of dual inhibitors for matrix metalloproteinase (MMP) and cathepsin is described. An appropriate alignment of peptide-parts and two different specific functional groups in one molecule led to the discovery of a potent dual inhibitor (3a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号