首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Nineteen arabica coffee introgression lines (BC1F4) and two accessions derived from a spontaneous interspecific cross (i.e. Timor Hybrid) between Coffea arabica (2n=4x=44) and C. canephora (2n=2x=22) were analysed for the introgression of C. canephora genetic material. The Timor Hybrid-derived genotypes were evaluated by AFLP, using 42 different primer combinations, and compared to 23 accessions of C. arabica and 8 accessions of C. canephora. A total of 1062 polymorphic fragments were scored among the 52 accessions analysed. One hundred and seventy-eight markers consisting of 109 additional bands (i.e. introgressed markers) and 69 missing bands distinguished the group composed of the Timor Hybrid-derived genotypes from the accessions of C. arabica. AFLP therefore seemed to be an extremely efficient technique for DNA marker generation in coffee as well as for the detection of introgression in C. arabica. The genetic diversity observed in the Timor Hybrid-derived genotypes appeared to be approximately double that in C. arabica. Although representing only a small proportion of the genetic diversity available in C. canephora, the Timor Hybrid obviously constitutes a considerable source of genetic diversity for arabica breeding. Analysis of genetic relationships among the Timor Hybrid-derived genotypes suggested that introgression was not restricted to chromosome substitution but also involved chromosome recombinations. Furthermore, the Timor Hybrid-derived genotypes varied considerably in the number of AFLP markers attributable to introgression. In this way, the introgressed markers identified in the analysed arabica coffee introgressed genotypes were estimated to represent from 9% to 29% of the C. canephora genome. Nevertheless, the amount of alien genetic material in the introgression arabica lines remains substantial and should justify the development of adapted breeding strategies. Received: 2 February 1999 / Accepted: 12 May 1999  相似文献   

2.
Genetic diversity of Coffea arabica cultivars was estimated using amplified fragment length polymorphism (AFLP) markers. Sixty one Coffea accessions composed of six arabica cultivars, including Typica, Bourbon, Catimor, Catuai, Caturra and Mokka Hybrid, plus two diploid Coffea species, were analyzed with six EcoRI- MseI primer combinations. A total of 274 informative AFLP markers were generated and scored as binary data. These data were analyzed using cluster methods in the software package NTSYSpc. The differences among cultivars at the DNA level were small, with an average genetic similarity of 0.933. Most accessions within a cultivar formed a cluster, although deviant samples occurred in five of the six cultivars examined due to residual heterozygosity from ancestral materials. Among the six cultivars fingerprinted, the highest level of genetic diversity was found within the cultivar Catimor, with an average genetic similarity of 0.880. The lowest level was found within Caturra accessions, with an average genetic similarity of 0.993. Diversity between C. arabica and two other Coffea species, Coffea canephora and Coffea liberica, was also estimated with average genetic similarities of 0.540 and 0.413, respectively, suggesting that C. canephora is more closely related to C. arabica than is C. liberica. The genetic variation among arabica cultivars was similar to the variation within cultivars, and no cultivar-specific DNA marker was detected. Although arabica cultivars appear to have a narrow genetic base, our results show that sufficient polymorphism can be found among some arabica cultivars with a genetic similarity as low as 0.767 for genetic/QTL mapping and breeding. The assessment of genetic diversity among arabica cultivars provided the necessary information to estimate the potential for using marker-assisted breeding for coffee improvement.  相似文献   

3.
Lines of Coffea arabica derived from the Timor Hybrid (hybrid between C. arabica and C. canephora) are resistant to coffee leaf rust (Hemileia vastatrix) and to the nematode Meloidogyne exigua. The introgression of C. canephora resistance genes is suspected of causing a drop in beverage quality. Coffee samples from pure lines, compared in a Trial 1, and from F1 hybrids and parental lines from a half-diallel trial in a Trial 2, were studied for beverage quality, chemical composition and amount of introgressed genetic material. Chemical analyses (caffeine, chlorogenic acids, fat, trigonelline, sucrose) were carried out with near-infrared spectrometry by reflectance of green coffee. The number of amplified fragment length polymorphic (AFLP) markers introgressed from the Timor Hybrid varied from 1 to 37 for the lines studied. There were significant differences between lines for all of the biochemical compounds analysed and for the acidity and the overall standard of the beverage. Two lines (T17927, T17924) were significantly poorer than the controls for sucrose and beverage acidity. T17924 also had more chlorogenic acids and was poorer for the overall standard. However, two highly introgressed lines, T17934 and T17931 (25 and 30 AFLP markers, respectively), did not differ from the non-introgressed controls. There were no correlations between the number of AFLP markers and the chemical contents or beverage attributes. Significant correlations were found between the performance of the parents and their general combining ability for beverage quality. It was concluded that it should be possible to find lines with both the desired resistance genes and good beverage quality. Selection can avoid accompanying the introgression of resistance genes with a drop in beverage quality.  相似文献   

4.
Coffee is one of the most widely consumed beverages and represents a multibillion-dollar global industry. Accurate identification of coffee cultivars is essential for efficient management, exchange, and use of coffee genetic resources. To date, a universal platform that can allow data comparison across different laboratories and genotyping platforms has not been developed by the coffee research community. Using expressed sequence tags (EST) of Coffea arabica, C. canephora and C. racemosa from public databases, we developed 7538 single nucleotide polymorphism (SNP) markers and selected 180 for validation using 25 C. arabica and C. canephora accessions from Puerto Rico. Based on the validation result, we designated a panel of 55 SNP markers that are polymorphic across the two species. The average minor allele frequency and information index of this SNP panel are 0.281 and 0.690, respectively. This panel enabled the differentiation of all tested accessions of C. canephora, which accounts for 79.2 % of the total polymorphism in the samples. Only 21.8 % of the polymorphic SNPs were detected in the 12 C. arabica cultivars, which, nonetheless, were able to unambiguously differentiate the 12 Arabica cultivars into ten unique genotypes, including two synonymous groups. Several local Puerto Rican cultivars with partial Timor pedigree, including Limaní, Frontón, and TARS 18087, showed substantial genetic difference from the other common Arabica cultivars, such as Catuai, Borbón, and Mundo Nuevo. This coffee SNP panel provides robust and universally comparable DNA fingerprints, thus can serve as a genotyping tool to assist coffee germplasm management, propagation of planting material, and coffee cultivar authentication.  相似文献   

5.
Arabica coffee (Coffea arabica L.) is a self-compatible perennial allotetraploid species (2n=4x=44), whereas Robusta coffee (C. canephora L.) is a self-incompatible perennial diploid species (2n=2x=22). C. arabica (C(a) C(a) E(a) E(a) ) is derived from a spontaneous hybridization between two closely related diploid coffee species, C. canephora (CC) and C. eugenioides (EE). To investigate the patterns and degree of DNA sequence divergence between the Arabica and Robusta coffee genomes, we identified orthologous bacterial artificial chromosomes (BACs) from C. arabica and C. canephora, and compared their sequences to trace their evolutionary history. Although a high level of sequence similarity was found between BACs from C. arabica and C. canephora, numerous chromosomal rearrangements were detected, including inversions, deletions and insertions. DNA sequence identity between C. arabica and C. canephora orthologous BACs ranged from 93.4% (between E(a) and C(a) ) to 94.6% (between C(a) and C). Analysis of eight orthologous gene pairs resulted in estimated ages of divergence between 0.046 and 0.665 million years, indicating a recent origin of the allotetraploid species C. arabica. Analysis of transposable elements revealed differential insertion events that contributed to the size increase in the C(a) sub-genome compared to its diploid relative. In particular, we showed that insertion of a Ty1-copia LTR retrotransposon occurred specifically in C. arabica, probably shortly after allopolyploid formation. The two sub-genomes of C. arabica, C(a) and E(a) , showed sufficient sequence differences, and a whole-genome shotgun approach could be suitable for sequencing the allotetraploid genome of C. arabica.  相似文献   

6.
The use of single nucleotide polymorphism (SNP) molecular markers has provided advances in selection methodologies used in breeding programs of different crops, reducing cost and time of cultivar release. Despite the great economic and social importance of Coffea arabica, studies with SNP markers are scarce and a small number of SNP are available for this species, when compared with other crops of agronomic importance. Thus, the objective of this study was to identify and validate SNP molecular markers for the species Coffea arabica and to introduce these markers to genetic breeding by means of an accurate analysis of the diversity and genetic structure of breeding populations of this species. After quality filtering, 11,187 SNP markers were selected from the coffee population obtained from crosses between the genotypes Catuaí and Híbrido de Timor. A great number of markers were distributed in the 11 chromosomes, within transcribed regions, and were used to estimate the genetic dissimilarity among the individuals of the breeding population. Dendrogram analysis and a Bayesian approach demonstrated the formation of two groups and the discrimination of all genotypes evaluated. The expressive number of SNP molecular markers distributed throughout C. arabica genome was efficient to discriminate all the accessions evaluated in the experiment, clustering them according to their genealogies. This work identified mixtures within the progenies. The genotyping data also provided detailed information about the parental genotypes and led to the identification of new candidate parents to be introduced to the breeding program. The study discussed population structure and its consequence in obtaining improved varieties of C. arabica.  相似文献   

7.
8.
Genetic improvement of coffee (Coffea arabica L.) is constrained by low genetic diversity and lack of genetic markers, suitable screening tools, information on the genetic make‐up of available gene pool and long generation time. In this context, use of DNA markers such as microsatellites that provide high genetic‐resolution becomes highly desirable. Here, we report the development of nine new microsatellite markers from partial genomic library of an elite variety of Coffea arabica. The developed microsatellites revealed robust cross‐species amplifications in 17 related species of coffee, and their Polymorphic Information Content varied from 0 to 0.6, 0 to 0.78 and 0.67 to 0.90 for the arabica, robusta genotypes and species representatives, respectively. The data thus suggest their potential use as genetic markers for assessment of germplasm diversity and linkage analysis of coffee.  相似文献   

9.
Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.  相似文献   

10.
11.
Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization along the hybrid genome, confirming the weak differentiation between parental genomes. According to our genomic in situ hybridization (GISH) data, the observed genomic resemblance between the modern C. canephora genome (C) and the C. canephora-derived subgenome of C. arabica (Ca) appears rather considerable. Poor discrimination between C and Ca chromosomes supports the idea of low structural modifications of both genomes since the C. arabica speciation, at least in the frequency and distribution of repetitive sequences. GISH was also used to identify alien chromatin segments on chromosome spreads of a C. liberica-introgressed line of C. arabica. Further, use of GISH together with BAC-FISH analysis gave us additional valuable information about the physical localization of the C. liberica fragments carrying the SH3 factor involved in resistance to the coffee leaf rust. Overall, our results illustrate that FISH analysis is a complementary tool for molecular cytogenetic studies in coffee, providing rapid localization of either specific chromosomes or alien chromatin in introgressed genotypes derived from diploid species displaying substantial genomic differentiation from C. arabica.  相似文献   

12.
Chandra A  Tiwari KK  Nagaich D  Dubey N  Kumar S  Roy AK 《Génome》2011,54(12):1016-1028
A limited number of functional molecular markers has slowed the desired genetic improvement of Stylosanthes species. Hence, in an attempt to develop simple sequence repeat (SSR) markers, genomic libraries from Stylosanthes seabrana B.L. Maass & 't Mannetje (2n=2x=20) using 5' anchored degenerate microsatellite primers were constructed. Of the 76 new microsatellites, 21 functional primer pairs were designed. Because of the small number of primer pairs designed, 428 expressed sequence tag (EST) sequences from seven Stylosanthes species were also examined for SSR detection. Approximately 10% of sequences delivered functional primer pairs, and after redundancy elimination, 57 microsatellite repeats were selected. Tetranucleotides followed by trinucleotides were the major repeated sequences in Stylosanthes ESTs. In total, a robust set of 21 genomic-SSR (gSSR) and 20 EST-SSR (eSSR) markers were developed. These markers were analyzed for intraspecific diversity within 20 S. seabrana accessions and for their cross-species transferability. Mean expected (He) and observed (Ho) heterozygosity values with gSSR markers were 0.64 and 0.372, respectively, whereas with eSSR markers these were 0.297 and 0.214, respectively. Dendrograms having moderate bootstrap value (23%-94%) were able to distinguish all accessions of S. seabrana with gSSR markers, whereas eSSR markers showed 100% similarities between few accessions. The set of 21 gSSRs, from S. seabrana, and 20 eSSRs, from selected Stylosanthes species, with their high cross-species transferability (45% with gSSRs, 86% with eSSRs) will facilitate genetic improvement of Stylosanthes species globally.  相似文献   

13.
采用Genomic-SSR和EST—SSR标记技术,对来自我国北方冬麦区的18份普通小麦品种(系)的遗传多样性进行了探讨,并与系谱遗传距离进行了比较分析。研究发现,平均每个Genomic—SSR检测到的等位基因数为3.34个,明显高于EST-SSR的2.31个。遗传距离(GD)计算结果显示,18个小麦基因型之间的EST—SSR平均遗传距离较小,仅为0.3996,低于Genomic—SSR的GD平均值0.5458。尽管EST-SSR揭示出的多态性明显低于Genomic-SSR,但系谱分析和聚类结果均表明,与Genomic—SSR相比,EST—SSR标记能更准确地反映出不同小麦基因型之间的遗传和亲缘关系。据此可以认为,EST—SSR是评价小麦遗传多样性的一种理想标记形式。研究还证实,一个骨干亲本与由其衍生出来的品种(系)之间的遗传差异一般较小,并对拓宽普通小麦遗传基础的策略和方法进行了讨论。  相似文献   

14.
15.
Sugarcane (Saccharum spp. hybrid) with complex polyploid genome requires a large number of informative DNA markers for various applications in genetics and breeding. Despite the great advances in genomic technology, it is observed in several crop species, especially in sugarcane, the availability of molecular tools such as microsatellite markers are limited. Now-a-days EST-SSR markers are preferred to genomic SSR (gSSR) as they represent only the functional part of the genome, which can be easily associated with desired trait. The present study was taken up with a new set of 351 EST-SSRs developed from the 4085 non redundant EST sequences of two Indian sugarcane cultivars. Among these EST-SSRs, TNR containing motifs were predominant with a frequency of 51.6%. Thirty percent EST-SSRs showed homology with annotated protein. A high frequency of SSRs was found in the 5′UTR and in the ORF (about 27%) and a low frequency was observed in the 3′UTR (about 8%). Two hundred twenty-seven EST-SSRs were evaluated, in sugarcane, allied genera of sugarcane and cereals, and 134 of these have revealed polymorphism with a range of PIC value 0.12 to 0.99. The cross transferability rate ranged from 87.0% to 93.4% in Saccharum complex, 80.0% to 87.0% in allied genera, and 76.0% to 80.0% in cereals. Cloning and sequencing of EST-SSR size variant amplicons revealed that the variation in the number of repeat-units was the main source of EST-SSR fragment polymorphism. When 124 sugarcane accessions were analyzed for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions into seven groups. Thus, a high level of polymorphism adequate genetic diversity and population structure assayed with the EST-SSR markers not only suggested their utility in various applications in genetics and genomics in sugarcane but also enriched the microsatellite marker resources in sugarcane.  相似文献   

16.
A set of 118 simple sequence repeat (SSR) markers has been developed in melon from two different sources: genomic libraries (gSSR) and expressed sequence-tag (EST) databases (EST-SSR). Forty-nine percent of the markers showed polymorphism between the Piel de Sapo (PS) and PI161375 melon genotypes used as parents for the mapping populations. Similar polymorphism levels were found in gSSR (51.2%) and EST-SSR (45.5%). Two populations, F2 and a set of double haploid lines (DHLs), developed from the same parent genotypes were used for map construction. Twenty-three SSRs and 79 restriction fragment length polymorphisms (RFLPs), evenly distributed through the melon genome, were used to anchor the maps of both populations. Ten cucumber SSRs, 41 gSSRs, 16 EST-SSR, three single nucleotide polymorphism (SNP) markers, and the Nsv locus were added in the DHL population. The maps developed in the F2 and DHL populations were co-linear, with similar lengths, except in linkage groups G1, G9, and G10. There was segregation distortion in a higher proportion of markers in the DHL population compared with the F2, probably caused by selection during the construction of DHLs through in vitro culture. After map merging, a composite genetic map was obtained including 327 transferable markers: 226 RFLPs, 97 SSRs, three SNPs, and the Nsv locus. The map length is 1,021 cM, distributed in 12 linkage groups, and map density is 3.11 cM/marker. SSR markers alone cover nearly 80% of the map length. This map is proposed as a basis for a framework melon map to be merged with other maps and as an anchor point for map comparison between species of the Cucurbitaceae family.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Microsatellite markers, also known as SSRs (Simple Sequence Repeats), have proved to be excellent tools for identifying variety and determining genetic relationships. A set of 127 SSR markers was used to analyze genetic similarity in twenty five Coffea arabica varieties. These were composed of nineteen commercially important Brazilians and six interspecific hybrids of Coffea arabica, Coffea canephora and Coffealiberica. The set used comprised 52 newly developed SSR markers derived from microsatellite enriched libraries, 56 designed on the basis of coffee SSR sequences available from public databases, 6 already published, and 13 universal chloroplast microsatellite markers. Only 22 were polymorphic, these detecting 2-7 alleles per marker, an average of 2.5. Based on the banding patterns generated by polymorphic SSR loci, the set of twenty-five coffee varieties were clustered into two main groups, one composed of only Brazilian varieties, and the other of interspecific hybrids, with a few Brazilians. Color mutants could not be separated. Clustering was in accordance with material genealogy thereby revealing high similarity.  相似文献   

18.
Molecular markers were used to assess polymorphism between and within the genetic bases of coffee (i.e. Typica and Bourbon) spread from Yemen since the early 18th century that have given rise to most arabica cultivars grown world-wide. Eleven Coffea arabica accessions derived from the disseminated bases were evaluated by amplified fragment length polymorphism (AFLP) using 37 primer combinations and simple-sequence repeats (SSRs) produced by six microsatellites. Four cultivars growing in Yemen and 11 subspontaneous accessions collected in the primary centre of diversity of the species were included in the study in order to define their relationship with the accessions derived from the genetic bases of cultivars. One hundred and seven AFLP markers were used to calculate genetic distances and construct a dendrogram. The accessions derived from the disseminated bases were grouped separately, according to their genetic origin, and were distinguished from the subspontaneous accessions. The Yemen cultivars were classified with the Typica-derived accessions. Except for one AFLP marker, all AFLP and SSR markers present in the cultivated accessions were also detected in the subspontaneous accessions. Polymorphism among the subspontaneous accessions was much higher than among the cultivated accessions. It was very low within the genetic bases, confirming the historical documentation on their dissemination. The results enabled a discussion of the genetic diversity reductions that successively occurred during the dissemination of C. arabica from its primary centre of diversity.  相似文献   

19.
The importance of introgressive hybridization in plant evolution has long been recognized. Nevertheless, information on gene flow between allopolyploids and their diploid relatives is very limited, even though gene flow could play a major role in polyploid establishment and evolution. Here, we investigated the processes governing hybrid formation and introgression between the allotetraploid Coffea arabica and one of its ancestral diploid progenitors, C. canephora, in a sympatric zone of New Caledonia. The occurrence of a large assortment of hybridization events between the 2 coffee species is clearly established. First-generation hybrids (F1) and post-F1 hybrids were characterized. The involvement of unreduced gametes of C. canephora is suggested, because tetraploid F1 hybrid plants were detected. Moreover, although bidirectional mating was observed, only unidirectional gene flow from C. canephora to C. arabica was noted in post-F1 hybrids. Most of the collected post-F1 hybrid plants exhibited a high level of introgression, and the frequency of introgression observed among the different analyzed loci was homogeneous, suggesting no significant counterselection against introgressions from C. canephora. Overall, the New Caledonian central mountains appear to be a highly favourable environment for introgressive hybridization and a genetic diversity center for C. arabica.  相似文献   

20.
In the study, we developed new markers for phylogenetic relationships and intraspecies differentiation in Coffea. Nana and Divo, two novel Ty1-copia LTR-retrotransposon families, were isolated through C. canephora BAC clone sequencing. Nana- and Divo-based markers were used to test their: (1) ability to resolve recent phylogenetic relationships; (2) efficiency in detecting intra-species differentiation. Sequence-specific amplification polymorphism (SSAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and retrotransposon-based insertion polymorphism (RBIP) approaches were applied to 182 accessions (31 Coffea species and one Psilanthus accession). Nana- and Divo-based markers revealed contrasted transpositional histories. At the BAC clone locus, RBIP results on C. canephora demonstrated that Nana insertion took place prior to C. canephora differentiation, while Divo insertion occurred after differentiation. Combined SSAP and REMAP data showed that Nana could resolve Coffea lineages, while Divo was efficient at a lower taxonomic level. The combined results indicated that the retrotransposon-based markers were useful in highlighting Coffea genetic diversity and the chronological pattern of speciation/differentiation events. Ongoing complete sequencing of the C. canephora genome will soon enable exhaustive identification of LTR-RTN families, as well as more precise in-depth analyses on contributions to genome size variation and Coffea evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号