首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.  相似文献   

2.
Bacteria able to transfer electrons to conductive surfaces are of interest as catalysts in microbial fuel cells, as well as in bioprocessing, bioremediation, and corrosion. New procedures for immobilization of Geobacter sulfurreducens on graphite electrodes are described that allow routine, repeatable electrochemical analysis of cell-electrode interactions. Immediately after immobilizing G. sulfurreducens on electrodes, electrical current was obtained without addition of exogenous electron shuttles or electroactive polymers. Voltammetry and impedance analysis of pectin-immobilized bacteria transferring electrons to electrode surfaces could also be performed. Cyclic voltammetry of immobilized cells revealed voltage-dependent catalytic current similar to what is commonly observed with adsorbed enzymes, with catalytic waves centered at -0.15 V (vs. SHE). Electrodes maintained at +0.25 V (vs. SHE) initially produced 0.52 A/m(2) in the presence of acetate as the electron donor. Electrical Impedance Spectroscopy of coatings was also consistent with a catalytic mechanism, controlled by charge transfer rate. When electrodes were maintained at an oxidizing potential for 24 h, electron transfer to electrodes increased to 1.75 A/m(2). These observations of electron transfer by pectin-entrapped G. sulfurreducens appear to reflect native mechanisms used for respiration. The ability of washed G. sulfurreducens cells to immediately produce electrical current was consistent with the external surface of this bacterium possessing a pathway linking oxidative metabolism to extracellular electron transfer. This electrochemical activity of pectin-immobilized bacteria illustrates a strategy for preparation of catalytic electrodes and study of Geobacter under defined conditions.  相似文献   

3.
Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15 V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000 Ω external resistance). No current was generated at -0.30 V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40 V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15 V. The anode community in the -0.15 V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100 Ω for MFCs originally set at -0.15 and +0.15 V; 150 Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15 V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities.  相似文献   

4.
5.
6.
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed.  相似文献   

7.
Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (R(2)=0.92) was developed between current values (0-0.30 mA) and acetate concentrations (0-2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.  相似文献   

8.
Development of a genetic system for Geobacter sulfurreducens.   总被引:4,自引:0,他引:4  
Members of the genus Geobacter are the dominant metal-reducing microorganisms in a variety of anaerobic subsurface environments and have been shown to be involved in the bioremediation of both organic and metal contaminants. To facilitate the study of the physiology of these organisms, a genetic system was developed for Geobacter sulfurreducens. The antibiotic sensitivity of this organism was characterized, and optimal conditions for plating it at high efficiency were established. A protocol for the introduction of foreign DNA into G. sulfurreducens by electroporation was also developed. Two classes of broad-host-range vectors, IncQ and pBBR1, were found to be capable of replication in G. sulfurreducens. In particular, the IncQ plasmid pCD342 was found to be a suitable expression vector for this organism. When the information and novel methods described above were utilized, the nifD gene of G. sulfurreducens was disrupted by the single-step gene replacement method. Insertional mutagenesis of this key gene in the nitrogen fixation pathway impaired the ability of G. sulfurreducens to grow in medium lacking a source of fixed nitrogen. Expression of the nifD gene in trans complemented this phenotype. This paper constitutes the first report of genetic manipulation of a member of the Geobacter genus.  相似文献   

9.
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.  相似文献   

10.
11.
12.
The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six different growth conditions in order to enhance the potential that a wide range of genes would be expressed. The AMT tag approach was able to identify a much greater number of proteins than could be detected with the 2-D PAGE approach. With the AMT approach over 3,000 gene products were identified, representing about 90% of the total predicted gene products in the genome. A high proportion of predicted proteins in most protein role categories were detected; the highest number of proteins was identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT tag approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.  相似文献   

13.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the sigma-proteobacterium Geobacter sulfurreducens Am-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydration of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens Am-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed.  相似文献   

14.
The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms.  相似文献   

15.
A novel fluorescence technique for monitoring the redox status of c-type cytochromes in Geobacter sulfurreducens was developed in order to evaluate the capacity of these extracytoplasmic cytochromes to store electrons during periods in which an external electron acceptor is not available. When intact cells in which the cytochromes were in a reduced state were excited at a wavelength of 350 nm, they fluoresced with maxima at 402 and 437 nm. Oxidation of the cytochromes resulted in a loss of fluorescence. This method was much more sensitive than the traditional approach of detecting c-type cytochromes via visible light absorbance. Furthermore, fluorescence of reduced cytochromes in individual cells could be detected via fluorescence microscopy, and the cytochromes in a G. sulfurreducens biofilm, remotely excited with an optical fibre, could be detected at distances as far as 5 cm. Fluorescence analysis of cytochrome oxidation and reduction of the external electron acceptor, anthraquinone-2,6-disulfonate, suggested that the extracytoplasmic cytochromes of G. sulfurreducens could store approximately 10(7) electrons per cell. Independent analysis of the haem content of the cells determined from analysis of incorporation of (55)Fe into cytochromes provided a similar estimate of cytochrome electron-storage capacity. This electron-storage capacity could, in the absence of an external electron acceptor, permit continued electron transfer across the inner membrane sufficient to supply the maintenance energy requirements for G. sulfurreducens for up to 8 min or enough proton motive force to power flagella motors for G. sulfurreducens motility. The fluorescence approach described here provides a sensitive method for evaluating the redox status of Geobacter species in culture and/or its environments. Furthermore, these results suggest that the periplasmic and outer-membrane cytochromes of Geobacter species act as capacitors, allowing continued electron transport, and thus viability and motility, for Geobacter species as they move between heterogeneously dispersed Fe(III) oxides during growth in the subsurface.  相似文献   

16.
17.
Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended with Geobacter sulfurreducens strain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant bacterial communities. Biofilm formation on the uncoated electrodes was poor and insufficient for further analyses. Bioanode samples from the Pt- and Ta-coated Ti electrodes incubated with Fe(III) and acetate showed several Fe(III)-reducing bacteria, of which selected species were dominant, on the surface of the electrodes. In contrast, nitrate-enriched samples showed less diversity, and the enriched strains were not dominant on the electrode surface. Isolated Fe(III)-reducing strains were phylogenetically related, but not all identical, to Geobacter sulfurreducens strain PCA. Other bacterial species were also detected in the system, such as a Propionicimonas-related species that was dominant in the anodic liquid and Pseudomonas-, Clostridium-, Desulfovibrio-, Azospira-, and Aeromonas-related species.  相似文献   

18.
Geobacter sulfurreducens contains a 9.6-kDa c-type cytochrome that was previously proposed to serve as an extracellular electron shuttle to insoluble Fe(III) oxides. However, when the cytochrome was added to washed-cell suspensions of G. sulfurreducens it did not enhance Fe(III) oxide reduction, whereas similar concentrations of the known electron shuttle, anthraquinone-2,6-disulfonate, greatly stimulated Fe(III) oxide reduction. Furthermore, analysis of the extracellular c-type cytochromes in cultures of G. sulfurreducens demonstrated that the dominant c-type cytochrome was not the 9.6-kDa cytochrome, but rather a 41-kDa cytochrome. These results and other considerations suggest that the 9.6-kDa cytochrome is not an important extracellular electron shuttle to Fe(III) oxides.  相似文献   

19.
Geobacter sulfurreducens required expression of electrically conductive pili to form biofilms on Fe(III) oxide surfaces, but pili were also essential for biofilm development on plain glass when fumarate was the sole electron acceptor. Furthermore, pili were needed for cell aggregation in agglutination studies. These results suggest that the pili of G. sulfurreducens also have a structural role in biofilm formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号