首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively.  相似文献   

2.
Hemicellulosic hydrolyzates from trimming wastes of vine shoots were proposed as a carbon source for lactic acid production by Lactobacillus pentosus CECT-4023T (ATCC-8041). These hydrolyzates are composed mainly of glucose (12.0 g/L), xylose (17.5 g/L) and arabinose (4.3 g/L). Acetic acid, the main subproduct, started to be produced after all of the glucose was completely depleted, showing that the acetic acid coproduction came only from the xylose and arabinose consumption. In the absence of glucose, the L. pentosus pathway shifts from homo to heterofermentative. Thus, L. pentosus can be considered a facultative heterofermentative organism, degrading hexoses (glucose) via the Embden-Meyerhoff-Parnas pathway and pentoses (xylose and arabinose) via the phosphoketolase pathway. Hydrolyzates were vacuum evaporated to increase the initial sugars concentration up to 35.4 g/L of glucose, 52.3 g/L of xylose, and 13.0 g/L of arabinose. Under these conditions the lactic acid concentration reached 46.0 g/L (Q(P) = 0.933 g/L.h, Y(P/S) = 0.78 g/g; Y(P/S) theoretical = 91.7%) and a clear product inhibition was observed. Additional experiments with synthetic sugars, in the absence of inhibitory compounds, indicate that this inhibition must be attributed to the metabolic pathway but not to the inhibitory compounds present in the fermentation broth.  相似文献   

3.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

4.
Signal amplification of padlock probes by rolling circle replication.   总被引:14,自引:10,他引:4       下载免费PDF全文
Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe.  相似文献   

5.
The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.  相似文献   

6.
Summary An enzyme preparation from aCellulomonas strain has been shown previously to be active in releasing reducing sugars from alkali pretreated sugar cane bagasse. This enzyme preparation has been demonstrated to be very resistant to end product inhibition by xylose, glucose, cellobiose and ethanol.  相似文献   

7.
We have demonstrated that sugars and suger/zinc mixtures can be used to preserve the activity of dried phosphofructokinase (PFK) during long-term storage over CaSO4. After 9 weeks in the presence of either 200 mM sucrose or 200 mM trehalose little loss of PFK activity was noted, with almost 60% of the original prefreeze-dry activity recovered when samples were rehydrated. Even reducing sugars protected the dried enzyme throughout the entire storage period. Of the sugars tested, 200 mM lactose provided the most stability to PFK; at the end of the dry storage, over 80% of the initial activity was recovered. With either 200 mM maltose or 400 mM glucose, about 40% of the initial activity was recovered at the end of the experiment. With all the sugars tested, the addition of 0.6 mM Zn2+ to sugar/PFK mixtures enhanced the stability of the enzyme, and no long-term adverse effects of the metal ion on enzyme activity were noted.  相似文献   

8.
Metabolic engineering applications to renewable resource utilization   总被引:26,自引:0,他引:26  
Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.  相似文献   

9.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Delta strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

10.
If, following an inductive treatment of 2 d of continuous darkness, shoot apices of Pharbitis nil are cultured 1 d later on White's medium supplemented with 2% sucrose, they cannot form carpels, but they can if they are cultured on 2% glucose. It was hypothesized that the differential effect of these sugars was because of differential expression of carpel-specific genes. Partial cDNA homologues to the Arabidopsis genes, LEAFY (PnLFY), AGAMOUS (PnAG1/2), and CRABS CLAWS (PnCRC1/2) were cloned. PnLFY was expressed in the shoot apex 1 d following the start of induction and remained higher than in non-induced apices for a further 6 d before exhibiting a major peak of expression on day 7. Peaks of expression of PnAG1 and PnAG2 spanned days 7-11, coinciding with the appearance of stamens and then carpels. The Pharbitis 'PnCRC2' showed greatest homology to Arabidopsis YABBY2 (PnYABBY). Its expression peaked on day 8 when the carpels first appeared. 'PnCRC1' showed greatest homology to Arabidopsis FILAMENTOUS (PnFIL). Its expression was approximately the same in inductive and non-inductive treatments. Apart from PnFIL these partial cDNAs could be used as markers to test the hypothesis concerning differential effects of sucrose and glucose. Cultured shoot apices from induced plants were sampled at weekly intervals. All four genes were expressed more strongly in the glucose compared with the sucrose treatment, most notably at day 17. A more intensive sampling (days 15-19) indicated that PnLFY and PnYABBY exhibited much higher expression on glucose compared with sucrose, most notably on days 15-16 and days 18-19.  相似文献   

11.
In chick embryo fibroblast cultures the 15- to 30-fold enhancement of D-glucose uptake observed when cells are starved of glucose for 24 hours is not duplicated for derivatives of glucose that compete effectively for uptake and have generally been considered to use the same carrier. 2-deoxy-D-glucose, D-mannose, D-galactose and D-glucosamine are derepressed progressively less sharply in that order with glucosamine uptake never more than doubled by starvation. D-glucose at a concentration of 5.5 mM in the 24-hour conditioning medium is a strong "repressor" resulting in low "transport" behavior for each of the five sugars cited. D-glucosamine is equally effective at the same concentration. A 10-fold reduction in the concentration of glucosamine (0.55 mM) allows for the escape from repression of mannose, glucose, and deoxyglucose uptake while the others remain repressed. Mannose uptake escapes as well when the glucose concentration in the "conditioning" medium is similarly reduced. Under certain conditions of starvation and cell density dramatic effects of supplemental stimulation by insulin can be achieved. Insulin withdrawal interrupts the supplemental stimulation process. Cycloheximide, actinomycin D and cordycepin block both non-insulin and insulin-induced derepression. Short exposure (15-30 minutes) of 24-hour starved cells to glucose (5.5 mM) reduces glucose sharply but does not affect 3-O-methyl glucose uptake. If the exposure is to 2-deoxyglucose (5.5 mM) further derepression of glucose uptake results.  相似文献   

12.
Conclusion The white-skinned, low polyphenol cultivars of sorghum are the most likely to be used as brewing raw materials for adjunct and/or malt production. Efficient use of a food grain such as sorghum in brewing, demands that ample supplies are available and that by-products of adjunct or malt production are processed and marketed efficiently. Present research on the brewing potential of sorghum will undoubtedly benefit the agricultural development of the crop.Many countries are known for the famous drinks and beverages they produce. The cost of sorghum beer production must therefore be measured against drinkability of the product. A sub-standard product will not develop and will reflect badly on its producer. Although complete conversion of sorghum starch to fermentable sugars is avoided in brewing, efficient conversion of starch into glucose will require the addition of suitable commercial heat-stable amyloglucosidase enzymes. Future work on sorghum must be conducted scientifically and technologically with regard to its suitability as adjunct and/or as malt.  相似文献   

13.
14.
The metabolism of 14C-acetate was investigated during the in vitro germination of yellow lupine seeds. Carbon atoms (14C) from the C-2 position of acetate were incorporated mainly into amino acids: aspartate, glutamate, and glutamine and into sugars: glucose, sucrose, and fructose. In contrast to this, 14C from the C-1 position of acetate was released mainly as 14CO2. Incorporation of 1-14C and 2-14C from acetate into amino acids and sugars in seedling axes was more intense when sucrose was added to the medium. However, in cotyledons where lipids are converted to carbohydrates, this process was inhibited by exogenous sucrose. Since acetate is the product of fatty acid beta-oxidation, our results indicate that, at least in lupine, seed storage lipids can be converted not only to sucrose, but mainly to amino acids. Inhibitory effects of sucrose on the incorporation of 14C from acetate into amino acids and sugars in cotyledons of lupine seedlings may be explained as the effect of regulation of the glyoxylate cycle by sugars.  相似文献   

15.
Cultures using nitrate as the terminal electron acceptor were conducted in Schaeffer's medium to evaluate the growth performance and metabolic profiles of Bacillus subtilis, and its potential to express the aprE (subtilisin) gene under anoxic conditions. Nitrate was converted to ammonia through nitrite reduction; and different product profiles were observed during the growth phase when nitrate was added at various concentrations (4-24 mM) to Schaeffer's medium containing glucose (4 g l(-1)). If nitrate was not limiting, then acetic acid and acetoin were accumulated, suggesting a limitation of reduced cofactors but, if nitrate became limiting, then lactic acid and butanediol were accumulated, suggesting an excess of reduced cofactors. Due to a strong lysis at the onset of the end of the growth phase, sporulation frequency and aprE expression were negligible in anaerobic batch cultures. Fed-batch fermentation allowed the development of a stationary phase through a continuous supply of glucose and nitrate. In this case, sporulation frequency was almost null, but interestingly aprE expression was similar to that found in aerobic cultures.  相似文献   

16.
Glucose confers acid resistance on exponentially growing bacteria by repressing formation of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and consequently activating acid resistance genes. Therefore, in a glucose-rich growth environment, bacteria are capable of resisting acidic stresses due to low levels of cAMP-CRP. Here we reveal a second mechanism for glucose-conferred acid resistance. We show that glucose induces acid resistance in exponentially growing bacteria through pyruvate, the glycolysis product. Pyruvate and/or the downstream metabolites induce expression of the small noncoding RNA (sncRNA) Spot42, and the sncRNA, in turn, activates expression of the master regulator of acid resistance, RpoS. In contrast to glucose, pyruvate has little effect on levels of the cAMP-CRP complex and does not require the complex for its effects on acid resistance. Another important difference between glucose and pyruvate is that pyruvate can be produced by bacteria. This means that bacteria have the potential to protect themselves from acidic stresses by controlling glucose-derived generation of pyruvate, pyruvate-acetate efflux, or reversion from acetate to pyruvate. We tested this possibility by shutting down pyruvate-acetate efflux and found that the resulting accumulation of pyruvate elevated acid resistance. Many sugars can be broken into glucose, and the subsequent glycolysis generates pyruvate. Therefore, pyruvate-associated acid resistance is not confined to glucose-grown bacteria but is functional in bacteria grown on various sugars.  相似文献   

17.
As a first step in the research on ethanol production from lignocellulose residues, sugar fermentation by Fusarium oxysporum in oxygen-limited conditions is studied in this work. As a substrate, solutions of arabinose, glucose, xylose and glucose/xylose mixtures are employed. The main kinetic and yield parameters of the process are determined according to a time-dependent model. The microorganism growth is characterized by the maximum specific growth rate and biomass productivity, the substrate consumption is studied through the specific consumption rate and biomass yield, and the product formation via the specific production rate and product yields. In conclusion, F. oxysporum can convert glucose and xylose into ethanol with product yields of 0.38 and 0.25, respectively; when using a glucose/xylose mixture as carbon source, the sugars are utilized sequentially and a maximum value of 0.28 g/g ethanol yield is determined from a 50% glucose/50% xylose mixture. Although fermentation performance by F.␣oxysporum is somewhat lower than that of other fermenting microorganisms, its ability for simultaneous lignocellulose-residue saccharification and fermentation is considered as a potential advantage.  相似文献   

18.
Dextran was synthesized using dextransucrase from Streptococus sanguis 10558 and (F)-[14C]sucrose as substrate to test the possibility that sucrose may be the initial acceptor for glucose. If sucrose is the initial acceptor, then dextran chains should have [14C] fructose in a terminal ‘sucrose’ linkage which can be cleaved under mild conditions. Although incorporation of [14C]fructose into dextran was observed, the label was not released by mild hydrolysis, indicating that sucrose is not the initiator for dextran synthesis. Incorporation of [14C]fructose into dextran might represent its ability to act as an acceptor, as suggested by the isolation of leucrose as a by-product in the reaction.  相似文献   

19.
Sulfolobus acidocaldarius utilizes glucose and xylose as sole carbon sources, but its ability to metabolize these sugars simultaneously is not known. We report the absence of diauxie during growth of S. acidocaldarius on glucose and xylose as co-carbon sources. The presence of glucose did not repress xylose utilization. The organism utilized a mixture of 1 g/liter of each sugar simultaneously with a specific growth rate of 0.079 h(-1) and showed no preference for the order in which it utilized each sugar. The organism grew faster on 2 g/liter xylose (0.074 h(-1)) as the sole carbon source than on an equal amount of glucose (0.022 h(-1)). When grown on a mixture of the two carbon sources, the growth rate of the organism increased from 0.052 h(-1) to 0.085 h(-1) as the ratio of xylose to glucose increased from 0.25 to 4. S. acidocaldarius appeared to utilize a mixture of glucose and xylose at a rate roughly proportional to their concentrations in the medium, resulting in complete utilization of both sugars at about the same time. Gene expression in cells grown on xylose alone was very similar to that in cells grown on a mixture of xylose and glucose and substantially different from that in cells grown on glucose alone. The mechanism by which the organism utilized a mixture of sugars has yet to be elucidated.  相似文献   

20.
Alkaline degradation of invert sugar from molasses   总被引:1,自引:0,他引:1  
Sugar beet and sugar cane molasses have been shown to be suitable starting materials for producing de-icer preparations. The sucrose in the molasses is hydrolyzed to glucose and fructose by invertase. The reducing sugars are then degraded by NaOH, the alkali being neutralized by the sugar acids produced, resulting in an increase of the ionic strength and consequently depression of the freezing point of the resulting solution. For the preparation of de-icers, the desired freezing point depression to a temperature of less than about -20 degrees C can be achieved by adjusting the amount and concentration of the alkali metal hydroxide used. The resulting products are biodegradable and eliminate the corrosive effects associated with the use of conventional chloride salts. Degradation of invert sugar by NaOH has been achieved without an external heat source. The reaction products showed the same freezing point depression as seen in the degradation products from pure glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号