首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of a series of histidine-containing peptides with biological model membranes have been investigated by attenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy. Related peptides have previously been shown to exhibit antibiotic and DNA transfection activities. The 26-residue LAH4X4 peptides were designed in such a manner to form amphipathic helical structures in membrane environments. Four histidines and four variable amino acids X constitute one face of the helix whereas leucines and alanines characterize the opposite hydrophobic surface. The dichroic ratio of ATR-FTIR spectra has been used to follow the pH-dependent transition from in-plane to transmembrane alignments upon increase in pH. A theoretical model of the topological modulations is presented and the experimental transition curves analysed in order to reveal the Gibbs free energy of transition. The novel concept provides access to the free energy changes associated with the amino acids X incorporated into an extended alpha-helix and in the context of phospholipid bilayers. For the peptides of the series the Gibbs free energies associated with the transition from the membrane interface to the bilayer interior follow the sequence of amino acids: L相似文献   

2.
The histidine-rich peptides of the LAH4 family were designed using cationic antimicrobial peptides such as magainin and PGLa as templates. The LAH4 amphipathic helical sequences exhibit a multitude of interesting biological properties such as antimicrobial activity, cell penetration of a large variety of cargo and lentiviral transduction enhancement. The parent peptide associates with lipid bilayers where it changes from an orientation along the membrane interface into a transmembrane configuration in a pH-dependent manner. Here we show that LAH4 adopts a transmembrane configuration in fully saturated DMPC membranes already at pH 3.5, i.e. much below the pKa of the histidines whereas the transition pH in POPC correlates closely with histidine neutralization. In contrast in POPG membranes the in-planar configuration is stabilized by about one pH unit. The differences in pH can be converted into energetic contributions for the in-plane to transmembrane transition equilibrium, where the shift in the transition pH due to lipid saturation corresponds to energies which are otherwise obtained by the exchange of several cationic with hydrophobic residues. A similar dependence on lipid saturation has also been observed when the PGLa and magainin antimicrobial peptides interact within lipid bilayers suggesting that the quantitative evaluation presented in this paper also applies to other membrane polypeptides.  相似文献   

3.
Bechinger B 《FEBS letters》2001,504(3):161-165
Helical peptides reconstituted into oriented phospholipid bilayers were studied by proton-decoupled 15N solid-state NMR spectroscopy. Whereas hydrophobic channel peptides, such as the N-terminal region of Vpu of HIV-1, adopt transmembrane orientations, amphipathic peptide antibiotics are oriented parallel to the bilayer surface. The interaction contributions that determine the alignment of helical peptides in lipid membranes were analysed using model sequences, and peptides that change their topology in a pH-dependent manner have been designed. The energy contributions of histidines, lysines, leucines and alanines as well as the alignment of peptides and phospholipids under conditions of hydrophobic mismatch have been investigated in considerable detail.  相似文献   

4.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

5.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a monotopic membrane protein anchored to the membrane by an N-terminal in-plane amphipathic alpha-helix. This membrane anchor is essential for the assembly of a functional viral replication complex. Although amino acid sequences differ considerably, putative membrane anchors with amphipathic features were predicted in NS5A from related Flaviviridae family members, in particular bovine viral diarrhea virus (BVDV), the prototype representative of the genus Pestivirus. We report here the NMR structure of the membrane anchor 1-28 of NS5A from BVDV in the presence of different membrane mimetic media. This anchor includes a long amphipathic alpha-helix of 21 residues interacting in-plane with the membrane interface and including a putative flexible region. Molecular dynamic simulation at a water-dodecane interface used to mimic the surface separating a lipid bilayer and an aqueous medium demonstrated the stability of the helix orientation and the location at the hydrophobic-hydrophilic interface. The flexible region of the helix appears to be required to allow the most favorable interaction of hydrophobic and hydrophilic side chain residues with their respective environment at the membrane interface. Despite the lack of amino acid sequence similarity, this amphipathic helix shares common structural features with that of the HCV counterpart, including a stable, hydrophobic N-terminal segment separated from the more hydrophilic C-terminal segment by a local, flexible region. These structural conservations point toward conserved roles of the N-terminal in-plane membrane anchors of NS5A in replication complex formation of HCV, BVDV, and other related viruses.  相似文献   

6.
Polypeptides have been prepared by solid-phase peptide synthesis and labelled with 15N at single sites to be used for static or magic angle spinning solid-state NMR spectroscopy. After reconstitution into oriented membranes, the alignment of polypeptide alpha-helices with respect to the bilayer surface is accessible by proton-decoupled 15N solid-state NMR spectroscopy. In addition, limiting values of rotational diffusion coefficients are obtained. The effects of membrane inserted peptides on the bilayer phospholipids have been investigated by 2H and 31P solid-state NMR spectroscopy. Long hydrophobic peptides such as the channel-forming domains of Vpu of HIV-1 or M2 of influenza A adopt stable alignments approximately parallel to the bilayer normal in agreement with models suggesting transmembrane helical bundle formation. The 15N chemical shift data agree with tilt angles of approximately 20 degrees and 33 degrees, respectively. In contrast, multi-charged amphipathic alpha-helices adopt stable orientations parallel to the bilayer surface. In the presence of these peptides, decreased order parameters of the fatty acyl chains, membrane thinning, and the loss of long-range order are observed. Peptides that change topology in a pH dependent manner are more potent in antibiotic assays under experimental conditions where they show in-plane alignments. This result suggests that their detergent-like properties, rather than the formation of transmembrane helical bundles, are responsible for their cell-killing activities. Topological equilibria are also observed within proteins or for polypeptides that do not match the hydrophobic thickness of the bilayer.  相似文献   

7.
Harzer U  Bechinger B 《Biochemistry》2000,39(43):13106-13114
The secondary structure and alignment of hydrophobic model peptides in phosphatidylcholine membranes were investigated as a function of hydrophobic mismatch by CD and oriented proton-decoupled (15)N solid-state NMR spectroscopies. In addition, the macroscopic phase and the orientational order of the phospholipid headgroups was analyzed by proton-decoupled (31)P NMR spectroscopy. Both, variations in the composition of the polypeptide (10-30 hydrophobic residues) as well as the fatty acid acyl chain of the phospholipid (10-22 carbons) were studied. At lipid-to-peptide ratios of 50, the peptides adopt helical conformations and bilayer macroscopic phases are predominant. The peptide and lipid maintain much of their orientational order even when the peptide is calculated to be 3 A too short or 14 A too long to fit into the pure lipid bilayer. A continuous decrease in the (15)N chemical shift obtained from transmembrane peptides in oriented membranes suggests an increasing helical tilt angle when the membrane thickness is reduced. This response is, however, insufficient to account for the full hydrophobic mismatch. When the helix is much too long to span the membrane, both the lipid and the peptide order are perturbed, an indication of changes in the macroscopic properties of the membrane. In contrast, sequences that are much too short show little effect on the phospholipid headgroup order, but the peptides exhibit a wide range of orientational distributions predominantly close to parallel to the membrane surface. A thermodynamic formalism is applied to describe the two-state equilibrium between in-plane and transmembrane peptide orientations.  相似文献   

8.
Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.  相似文献   

9.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

10.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a membrane-associated, essential component of the viral replication complex. Here, we report the three-dimensional structure of the membrane anchor domain of NS5A as determined by NMR spectroscopy. An alpha-helix extending from amino acid residue 5 to 25 was observed in the presence of different membrane mimetic media. This helix exhibited a hydrophobic, Trprich side embedded in detergent micelles, while the polar, charged side was exposed to the solvent. Thus, the NS5A membrane anchor domain forms an in-plane amphipathic alpha-helix embedded in the cytosolic leaflet of the membrane bilayer. Interestingly, mutations affecting the positioning of fully conserved residues located at the cytosolic surface of the helix impaired HCV RNA replication without interfering with the membrane association of NS5A. In conclusion, the NS5A membrane anchor domain constitutes a unique platform that is likely involved in specific interactions essential for the assembly of the HCV replication complex and that may represent a novel target for antiviral intervention.  相似文献   

11.
The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions with cellular membranes. The bilayer association of the peptides has been shown to be strongly pH-dependent, with in-planar alignments under acidic conditions and transmembrane orientations when the histidines are discharged. Therefore, we investigated the pH- and temperature-dependent conformations of LAH4 in DPC micellar solutions and in a TFE/PBS solvent mixture. In the presence of detergent and at pH 4.1, LAH4 adopts helical conformations between residues 9 and 24 concomitantly with a high hydrophobic moment. At pH 6.1, a helix-loop-helix structure forms with a hinge encompassing residues His10-Ala13. The data suggest that the high density of histidine residues and the resulting electrostatic repulsion lead to both a decrease in the pK values of the histidines and a less stable α-helical conformation of this region. The hinged structure at pH 6.1 facilitates membrane anchoring and insertion. At pH 7.8, the histidines are uncharged and an extended helical conformation including residues 4-21 is again obtained. LAH4 thus exhibits a high degree of conformational plasticity. The structures provide a stroboscopic view of the conformational changes that occur during membrane insertion, and are discussed in the context of antimicrobial activity and DNA transfection.  相似文献   

12.
Amphipathic helices in membrane proteins that interact with the hydrophobic/hydrophilic interface of the lipid bilayer have been difficult to structurally characterize. Here, the backbone structure and orientation of an amphipathic helix in the full-length M2 protein from influenza A virus has been characterized. The protein has been studied in hydrated DMPC/DMPG lipid bilayers above the gel to liquid-crystalline phase transition temperature by solid-state NMR spectroscopy. Characteristic PISA (Polar Index Slant Angle) wheels reflecting helical wheels have been observed in uniformly aligned bilayer preparations of both uniformly 15N labeled and amino acid specific labeled M2 samples. Hydrogen/deuterium exchange studies have shown the very slow exchange of some residues in the amphipathic helix and more rapid exchange for the transmembrane helix. These latter results clearly suggest the presence of an aqueous pore. A variation in exchange rate about the transmembrane helical axis provides additional support for this claim and suggests that motions occur about the helical axes in this tetramer to expose the entire backbone to the pore.  相似文献   

13.
In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well.  相似文献   

14.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   

15.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

16.
The response to hydrophobic mismatch of membrane-bound M13 major coat protein is measured using site-directed fluorescence and ESR spectroscopy. For this purpose, we investigate the membrane-anchoring interactions of M13 coat protein in model systems consisting of phosphatidylcholine bilayers that vary in hydrophobic thickness. Mutant coat proteins are prepared with an AEDANS-labeled single cysteine residue in the hinge region of the protein or at the C-terminal side of the transmembrane helix. In addition, the fluorescence of the tryptophan residue is studied as a monitor for the N-terminal side of the transmembrane helix. The fluorescence results show that the hinge region and C-terminal side of the transmembrane helix hardly respond to hydrophobic mismatch. In contrast, the N-terminal side of the helical transmembrane domain shifts to a more apolar environment, when the hydrophobic thickness is increased. The apparent strong membrane-anchoring interactions of the C-terminus are confirmed using a mutant that contains a longer transmembrane domain. As a result of this mutation, the tryptophan residue at the N-terminal side of the helical domain clearly shifts to a more polar environment, whereas the labeled position 46 at the C-terminal side is not affected. The phenylalanines in the C-terminal part of the protein play an important role in these apparent strong anchoring interactions. This is demonstrated with a mutant in which both phenylalanines are replaced by alanine residues. The phenylalanine residues in the C-terminus affect the location in the membrane of the entire transmembrane domain of the protein.  相似文献   

17.
Annexins are soluble proteins that are best known for their ability to undergo reversible Ca(2+)-dependent binding to the surface of phospholipid bilayers. Recent studies, however, have shown that annexins also reversibly bind to membranes in a Ca(2+)-independent manner at mildly acidic pH. We investigated the structural changes that occur upon pH-dependent membrane binding by performing a nitroxide scan on the helical hairpin encompassing helices A and B in the fourth repeat of annexin B12. Residues 251-273 of annexin B12 were replaced, one at a time, with cysteine and then labeled with a nitroxide spin label. Electron paramagnetic resonance (EPR) mobility and accessibility analyses of soluble annexin B12 derivatives were in excellent agreement with the known crystal structure of annexin B12. However, EPR studies of annexin B12 derivatives bound to membranes at pH 4.0 indicated major structural changes in the scanned region. The helix-loop-helix structure present in the soluble protein was converted into a continuous transmembrane alpha-helix that was exposed to the hydrophobic core of the bilayer on one side and exposed to an aqueous pore on the other side. Asp-264 was on the hydrophobic membrane-exposed face of the amphipathic transmembrane helix, thereby suggesting that protonation of its carboxylate group stabilized the transmembrane form. Inspection of the amino acid sequence of annexin B12 revealed several other helical hairpin regions that might refold and form continuous amphipathic transmembrane helices in response to protonation of Asp or Glu switch residues on or near the hydrophobic face of the helix.  相似文献   

18.
Cheng X  Im W 《Biophysical journal》2012,102(7):L27-L29
NMR observables, such as NOE-based distance measurements, are increasingly being used to characterize membrane protein structures. However, challenges in membrane protein NMR studies often yield a relatively small number of such restraints that can create ambiguities in defining critical side chain-side chain interactions. In the recent solution NMR structure of the DAP12-NKG2C immunoreceptor transmembrane helix complex, five functionally required interfacial residues (two Asps and two Thrs in the DAP12 dimer and one Lys in NKG2C) display a surprising arrangement in which one Asp side chain faces the membrane hydrophobic core. To explore whether these side-chain interactions are energetically optimal, we used the published distance restraints for molecular dynamics simulations in explicit micelles and bilayers. The structures refined by this protocol are globally similar to the published structure, but the side chains of those five residues form a stable network of salt bridges and hydrogen bonds, leaving the Asp side chain shielded from the hydrophobic core, which is also consistent with available experimental observations. Moreover, the simulations show similar short-range interactions between the transmembrane complex and lipid/detergent molecules in micelles and bilayers, respectively. This study illustrates the efficacy of NMR membrane protein structure refinements in explicit membrane systems.  相似文献   

19.
The Bcl-2 family of proteins are well-characterized regulators of the intrinsic apoptotic pathway. Proteins within this family can be classified as either prosurvival or prodeath members and the balance between them present at the mitochondrial membrane is what determines if the cell lives or dies. Specific interactions among Bcl-2 family proteins play a crucial role in regulating programmed cell death. Structural studies have established a conserved interaction pattern among Bcl-2 family members. This interaction is mediated by the binding of the hydrophobic face of the amphipathic α-helical BH3 domain into a conserved hydrophobic groove on the prosurvival partners. It has been reported that an increase in the helical content of BH3 mimetic peptides considerably improves the binding affinity. In this context, this work states for designing peptides derived from the BH3 domain of the proapoptotic protein Bak by substitution of some non-interacting residues by the helical inducing residue Aib. Different synthetic peptides preserving BakBH3 relevant interactions were proposed and simulated presenting a better predicted binding energy and higher helical content than the wild type Bak peptide.  相似文献   

20.
Schibli DJ  Montelaro RC  Vogel HJ 《Biochemistry》2001,40(32):9570-9578
The membrane-proximal tryptophan-rich region of the HIV transmembrane glycoprotein, gp41, plays an important role in the membrane fusion reaction. Using NMR spectroscopy, we have studied the tertiary structure of a synthetic 19-residue amidated peptide (NH2-KWASLWNWFNITNWLWYIK-CONH2) corresponding to this region in membrane-mimetic environments. Initial experiments in sodium dodecyl sulfate/H2O micelles and trifluoroethanol gave poor results, because of low solubility. However, in dodecylphosphocholine micelles, we obtained excellent 500 and 800 MHz NMR spectra, suggesting that the peptide has a preference for a zwitterionic membrane-like environment. The final NMR structures demonstrated a well-defined helical peptide with a backbone rmsd of 0.47 +/- 0.18 A. Four of the five tryptophan residues, as well as the tyrosine residue, formed a "collar" of aromatic residues along the axial length of the helix. By analogy to related tryptophan-rich antimicrobial peptides, the structure indicates that the aromatic residues of the HIV peptide are positioned within the membrane-water interface of a phospholipid bilayer. This is confirmed by the observation of direct NOEs between the aromatic residues of the peptide to the headgroup and interfacial protons of prototonated dodecylphosphocholine. The bulk of the polar residues are positioned on one face of this structure, with the hydrophobic phenylalanine side chain on the opposing face, forming an amphipathic structure. This work shows that the Trp-rich membrane-proximal region of HIV and related viruses can bind to the surfaces of zwitterioninc membranes in a "Velcro-like" manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号