首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
The host range of bacteriophage Mu is regulated through an invertible segment. Inversion requires the presence of two properly oriented recombination sites and a recombinational enhancer sis. The reaction is catalyzed by the Mu-encoded DNA invertase Gin and a host factor termed factors for inversion stimulation (FISs). We present a novel purification scheme for Gin. Purified Gin alone catalyzes the inversion reaction at very low efficiency recombining less than 0.8% of substrate molecules. When supplemented with FIS substrates containing the recombinational enhancer are recombined efficiently. Stoichiometric amounts of Gin are required for recombination.  相似文献   

2.
Efficient DNA inversion catalysed by the invertase Gin requires the cis-acting recombinational enhancer and the Escherichia coliFIS protein. Binding of FIS bends the enhancer DNA and, on a negatively supercoiled DNA inversion substrate, facilitates the formation of a synaptic complex with specific topology. Previous studies have indicated that FIS-independent Gin mutants can be isolated which have lost the topological constraints imposed on the inversion reaction yet remain sensitive to the stimulatory effect of FIS. Whether the effect of FIS is purely architectural, or whether in addition direct protein contacts between Gin and FIS are required for efficient catalysis has remained an unresolved question. Here we show that FIS mutants impaired in DNA binding are capable of either positively or negatively affecting the inversion reaction both in vivo and in vitro. We further demonstrate that the mutant protein FIS K25E/V66A/M67T dramatically enhances the cleavage of recombination sites by FIS-independent Gin in an enhancer-independent manner. Our observations suggest that FIS plays a dual role in the inversion reaction and stimulates both the assembly of the synaptic complex as well as DNA strand cleavage.  相似文献   

3.
G inversion in bacteriophage Mu requires the product of the DNA invertase gene gin and an Escherichia coli host factor termed FIS (factor for inversion stimulation). A recombination substrate must contain two recombination sites, arranged as inverted repeats, and a recombinational enhancer sequence termed sis. FIS has been purified to homogeneity. The purified protein has a relative molecular weight of 12,000 when analyzed under denaturing conditions. The intact protein behaves as a dimer of relative molecular weight 25,000 in gel filtration analysis. The purified protein does not possess any recombinogenic activity when assayed in the absence of the DNA-invertase Gin. In the presence of purified Gin FIS is the only additional protein required for efficient inversion. By performing gel retention assays, we show that FIS is a DNA-binding protein, which specifically binds to DNA fragments containing the recombinational enhancer sis.  相似文献   

4.
Isolation and characterization of unusual gin mutants.   总被引:19,自引:8,他引:11       下载免费PDF全文
Site-specific inversion of the G segment in phage Mu DNA is promoted by two proteins, the DNA invertase Gin and the host factor FIS. Recombination occurs if the recombination sites (IR) are arranged as inverted repeats and a recombinational enhancer sequence is present in cis. Intermolecular reactions as well as deletions between direct repeats of the IRs rarely occur. Making use of a fis- mutant of Escherichia coli we have devised a scheme to isolate gin mutants that have a FIS independent phenotype. This mutant phenotype is caused by single amino acid changes at five different positions of gin. The mutant proteins display a whole set of new properties in vivo: they promote inversions, deletions and intermolecular recombination in an enhancer- and FIS-independent manner. The mutants differ in recombination activity. The most active mutant protein was analysed in vitro. The loss of site orientation specificity was accompanied with the ability to recombine even linear substrates. We discuss these results in connection with the role of the enhancer and FIS protein in the wild-type situation.  相似文献   

5.
The Gin recombination system of phage Mu mediates inversion of the DNA sequence between two sites (gix). In addition to Gin protein and gix sites, recombination requires an enhancer bound by the host factor FIS. We analyzed mutants of Gin that function in the absence of the enhancer and FIS and mediate deletion and intermolecular fusion in addition to inversion. The linking number changes caused by inversion imply that mutant Gin alone can form the same synaptic complex and can use the same strand exchange mechanism as the complete wild-type system. However, the linking number changes also reveal that unlike wild-type Gin, mutant Gin can recombine through more than one synaptic complex and can relax DNA in the absence of synapsis. This expanded repertoire allows mutant Gin to mediate DNA rearrangements not performed by wild-type Gin. Because mutant Gin, but not wild-type Gin, unwinds gix site DNA upon binding, we postulate that FIS and the enhancer function with (-) supercoiling to promote this unwinding with wild-type Gin. The analysis of the topological changes during DNA fusion shows that both the parallel gix site configuration and the right-handed rotation of the sites during exchange of wild-type Gin are a result of the (-) supercoiling of the substrate and the number of entrapped supercoils in the synaptic complex.  相似文献   

6.
The site-specific inversion reaction controlling flagellin synthesis in Salmonella involves the function of three proteins: Hin, Fis and HU. The DNA substrate must be supercoiled and contain a recombinational enhancer sequence in addition to the two recombination sites. Using mutant substrates or modified reaction conditions, large amounts of complexes can be generated which are recognized by double-stranded breaks within both recombination sites upon quenching. The cleaved molecules contain 2-bp staggered cuts within the central dinucleotide of the recombination site. Hin is covalently associated with the 5' end while the protruding 3' end contains a free hydoxyl. We demonstrate that complexes generated in the presence of an active enhancer are intermediates that have advanced past the major rate limiting step(s) of the reaction. In the absence of a functional enhancer, Hin is also able to assemble and catalyze site-specific cleavages within the two recombination sites. However, these complexes are kinetically distinct from the complexes assembled with a functional enhancer and cannot generate inversion without an active enhancer. The results suggest that strand exchange leading to inversion is mediated by double-stranded cleavage of DNA at both recombination sites followed by the rotation of strands to position the DNA into the recombinant configuration. The role of the enhancer and DNA supercoiling in these reactions is discussed.  相似文献   

7.
An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.  相似文献   

8.
DNA inversions in phages and bacteria   总被引:3,自引:0,他引:3  
In certain phages and bacteria, there is a recombination system that specifically promotes the inversion of a DNA fragment. These inversion events appear to act as genetic switches allowing the alternate expression of different sets of genes which in general code for surface proteins. The mechanism of inversion in one class of inversion systems (Gin/Hin) has been studied in detail. It involves the formation of a highly specific nucleoprotein complex in which not only the two recombination sites and the DNA invertase participate but also a recombinational enhancer to which the DNA-bending protein Fis is bound.  相似文献   

9.
R Kahmann  F Rudt  C Koch  G Mertens 《Cell》1985,41(3):771-780
The Gin function of bacteriophage Mu catalyzes inversion of the G DNA segment, thus switching the host range of Mu phage particles. This site-specific recombination event takes place between inverted repeat sequences (IR) that border the G segment. Sequences in the Mu beta region extending approximately from position 118 to 178 are essential for efficient inversion. In cis this region, termed sis, stimulates inversion about 15-fold. Neither the relative orientation of sis with respect to the IR sequences nor the distance to IR substantially influences the stimulatory effect. For full activity purified Gin protein must be supplemented with crude host factor from E. coli K12. We suggest that, in addition to Gin, a DNA-binding host protein is required for efficient G inversion.  相似文献   

10.
DNA resolvases and invertases are closely related, yet catalyze recombination within two distinct nucleoprotein structures termed synaptosomes and invertasomes, respectively. Different protein-protein and protein-DNA interactions guide the assembly of each type of recombinogenic complex, as well as the subsequent activation of DNA strand exchange. Here we show that invertase Gin catalyzes factor for inversion stimulation dependent inversion on isolated copies of sites I from ISXc5 res, which is typically utilized by the corresponding resolvase. The concomitant binding of Gin to sites I and III in res, however, inhibits recombination. A chimeric recombinase, composed of the catalytic domain of Gin and the DNA-binding domain of ISXc5 resolvase, recombines two res with high efficiency. Gin must therefore contain residues proficient for both synaptosome formation and activation of strand exchange. Surprisingly, this chimera is unable to assemble a productive invertasome; a result which implies a role for the C-terminal domain in invertasome formation that goes beyond DNA binding.  相似文献   

11.
Site-specific DNA inversion in phage Mu is catalysed by the phage-encoded DNA invertase Gin and a host factor FIS. We demonstrate that purified Gin protein binds specifically to 34-bp sequences that flank the G segment as inverted repeats. Each inverted repeat (IR) contains two binding sites for Gin which have to be arranged in a specific configuration to constitute a recombinogenic site. While one of these sites is bound when present alone, the other site is bound only in conjunction with the first one, suggesting cooperative binding. In addition to the sites within the IR, Gin binds with lower affinity to AT-rich sequences adjacent to the IR. We demonstrate that these sites do not participate in the inversion reaction. The IR itself can be shortened to 25 bp without effect on inversion frequency. Using gel mobility shift experiments on circular permuted fragments containing the IR we show that Gin bends DNA upon binding. We discuss the possibility that DNA bending is related to the formation of a productive synaptic complex.  相似文献   

12.
The serine family of site-specific DNA recombination enzymes accomplishes strand cleavage, exchange and religation using a synaptic protein tetramer. A double-strand break intermediate in which each protein subunit is covalently linked to the target DNA substrate ensures that the recombination event will not damage the DNA. The previous structure of a tetrameric synaptic complex of γδ resolvase linked to two cleaved DNA strands had suggested a rotational mechanism of recombination in which one dimer rotates 180° about the flat exchange interface for strand exchange. Here, we report the crystal structure of a synaptic tetramer of an unliganded activated mutant (M114V) of the G-segment invertase (Gin) in which one dimer half is rotated by 26° or 154° relative to the other dimer when compared with the dimers in the synaptic complex of γδ resolvase. Modeling shows that this rotational orientation of Gin is not compatible with its being able to bind uncleaved DNA, implying that this structure represents an intermediate in the process of strand exchange. Thus, our structure provides direct evidence for the proposed rotational mechanism of site-specific recombination.  相似文献   

13.
Host protein requirements for in vitro site-specific DNA inversion   总被引:55,自引:0,他引:55  
R C Johnson  M F Bruist  M I Simon 《Cell》1986,46(4):531-539
Flagellar phase variation is mediated by a recombination event that occurs at specific sites leading to inversion of a chromosomal segment of DNA. The presence of a 60 bp recombinational enhancer sequence on the DNA substrate molecule results in a 150-fold stimulation in the initial rate of inversion. The protein components required for inversion have been purified. They include the 21,000 dalton recombinase (Hin), a 12,000 dalton host protein (Factor II), and one of the major histone-like proteins of E. coli HU. The dependence of the initial rate of recombination on HU varies with respect to the location of the recombinational enhancer. The role of HU, Factor II, and the enhancer in facilitating site-specific recombination is discussed.  相似文献   

14.
The Gin DNA invertase of bacteriophage Mu carries out processive recombination in which multiple rounds of exchange follow synaptic complex formation. The stereostructure of the knotted products determined by electron microscopy establishes critical features of site synapsis and DNA exchange. Surprisingly, the invertase knots substrates with directly repeated sites as well as those with inverted sites. The results suggest that the Gin synaptic complex contains three mutually perpendicular dyads; one is the axis of site rotation during exchange, and they cause inverted and direct site substrates to form a similar synaptic complex. The extensive knotting by Gin has implications for the energetics of recombination and shows that the enhancer for recombination is required only at an early stage, and thus may normally operate in a hit-and-run fashion.  相似文献   

15.
R C Johnson  M I Simon 《Cell》1985,41(3):781-791
The alternate expression of flagellin genes in Salmonella is the result of an inversion of a 996 bp segment of chromosomal DNA. We have analyzed the components of this site-specific recombination reaction in an in vitro system derived from E. coli. Efficient Hin-mediated inversion requires the 20,000 MW Hin protein and a proteinase K-sensitive host component. The supercoiled DNA substrate must contain two 26 bp recombination sites in inverted configuration and a 60 bp sequence that increases the rate of recombination over 20-fold. This recombinational enhancer can function at many different locations and consists of at least two noncontiguous sequence domains whose relative orientation, but not precise spacing, with respect to each other is important. Synthetically derived wild-type and mutant recombination sites were constructed to analyze the sequence and structural features that are important within the recombination site.  相似文献   

16.
17.
The site-specific DNA inversion system Cin encoded by the bacteriophage P1 consists of a recombinase, two inverted crossing-over sites and a recombinational enhancer. The latter approximately 75 bp long genetic element is bifunctional due to its location within the 5' part of the cin gene encoding the recombinase. In order to determine the essential nucleotides for each of its two biological functions we randomly mutated the recombinational enhancer sequence sis(P1) and analysed both functions of the mutants obtained. Three distinct regions of this sequence were found to be important for the enhancer activity. One of them occupies the middle third of the enhancer sequence and it can suffer a number of functionally neutral base substitutions, while others are detrimental. The other two regions occupy the two flanking thirds of the enhancer. They coincide with binding sites of the host-coded protein FIS (Factor for Inversion Stimulation) needed for efficient DNA inversion in vitro. These sequences appear to be highly evolved allowing only a few mutations without affecting either of the biological functions. Taking the effect of mutations within these FIS binding sites into account a consensus sequence for the interaction with FIS was compiled. This FIS consensus implies a palindromic structure for the recombinational enhancer. This is in line with the orientation independence of enhancer action with respect to the crossing-over sites.  相似文献   

18.
R Osuna  S E Finkel    R C Johnson 《The EMBO journal》1991,10(6):1593-1603
The Fis protein of E. coli binds to a recombinational enhancer sequence that is required to stimulate Hin-mediated DNA inversion. Fis is also required for efficient lambda prophase excision in vivo. The properties of mutant Fis proteins were examined in vivo and in vitro with respect to their stimulatory effects on these two different site-specific DNA recombination reactions. Both recombination reactions are dramatically affected by mutations altering a helix-turn-helix DNA binding motif located near the Fis C-terminus (residues 74-93). These mutations invariably decrease DNA binding affinity and some cause reduced DNA bending. Mutations in the Fis N-terminal region reduce or abolish the stimulation of Hin-mediated DNA recombination by Fis, but have little or no effect on DNA binding or lambda excision. We conclude that there are at least two functionally distinct domains in Fis: a C-terminal DNA binding region that is required for promoting both DNA recombination reactions and an N-terminal region that is uniquely required for Hin-mediated inversion.  相似文献   

19.
The Hin DNA invertase promotes a site-specific DNA recombination reaction in the Salmonella chromosome. The native Hin reaction exhibits overwhelming selectivity for promoting inversions between appropriately oriented recombination sites and requires the Fis regulatory protein, a recombinational enhancer, and a supercoiled DNA substrate. Here, we report a robust recombination reaction employing oligonucleotide substrates and a hyperactive mutant form of Hin. Synaptic complex intermediates purified by gel electrophoresis were found to contain four Hin protomers bound to two recombination sites. Each Hin protomer is associated covalently with a cleaved DNA end. The cleaved complexes can be ligated into both parental and recombinant orientations at equivalent frequencies, provided the core residues can base-pair, and are readily disassembled into separated DNA fragments bound by Hin dimers. Kinetic analyses reveal that synapsis occurs rapidly, followed by comparatively slow Hin-catalyzed DNA cleavage. Subsequent steps of the reaction, including DNA exchange and ligation, are fast. Thus, post-synaptic step(s) required for DNA cleavage limit the overall rate of the recombination reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号