首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Erwinia amylovora is a polyphagous bacterium causing fire blight on apple, pear and over 130 other plant species belonging mainly to the Rosaceae family. Although E. amylovora is regarded as a very homogenous species, the particular strains can differ in pathogenic ability as far as their host range is concerned (e.g. those originating from Rubus or Maloidae plants) as well as by the extent of the disease they cause. It was found that strains originating from North America are generally more genetically heterogeneous than those from Europe. Diversity of E. amylovora is also related to streptomycin resistance as a result of its application to control of fire blight. The level of genetic heterogeneity of E. amylovora is so low (comparative genome analysis revealed a similarity of over 99% for the two genomes tested) that standard DNA-based techniques fail in detection of intra-species variability. Amplified fragment length polymorphism was found to be most useful for differentiation of strains of fire blight causal agent as well as techniques ensuing release of pan-genome sequences of two E. amylovora strains: multi-locus variable number of tandem repeats analysis and clustered regularly interspaced short palindrome repeats.  相似文献   

2.
Nine antibiotic producer strains of Erwinia herbicola (=Pantoea agglomerans), belonging to different groups, strongly inhibited growth of 21 streptomycin sensitive strains and 6 streptomycin resistant strains of E. amylovora. The antibacterial spectra of antibiotics produced by the tested strains of E. herbicola were mainly limited to E. amylovora and related tested species. The tested strains of E. amylovora that are resistant to streptomycin did not show cross-resistance to the different types of antibiotics produced by the tested strains of E. herbicola. The antibiotics produced by the different tested strains of E. herbicola did not exert any activity on tested fungi with the exception that strains Eh 153 and Eh 351 slightly inhibited the growth of Verticillium dahliae.  相似文献   

3.
Metabolic profiling by capillary liquid chromatography-electrospray mass spectrometry was used to monitor shifts in the proferrioxamine profiles of Erwinia amylovora in response to externally supplied potential proferrioxamine precursors, selected stable-isotope-labeled precursors and atypical precursors. Based on the qualitative and quantitative shifts in the proferrioxamine profiles, lysine and arginine are unambiguous, and agmatine, ornithine, diaminobutyric acid and the corresponding C3–5 diamines are highly likely precursors for proferrioxamine biosynthesis in E. amylovora. 5-Hydroxylysine (Hyl), a recently discovered growth inhibitor for E. amylovora, suppresses proferrioxamine production. The Hyl-induced growth inhibition can be reversed by basic amino acids. The basic amino acids also partly restore proferrioxamine synthesis.Part 12 in the series Metabolites of Erwinia, for Parts 10 and 11 see Feistner (1994d) and Feistner (1995b), respectively. Presented, in part, at ALEX '93. San Francisco. October 5–7. 1993, and at the 42nd ASMS Conference. Chicago. May 29–June 3, 1994.  相似文献   

4.
Fire blight caused by the Gram‐negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl‐homoserine lactone for bacterial cell‐to‐cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.  相似文献   

5.
The siderophore produced by Erwinia amylovora, the causal agent of fire blight of Maloideae, is one of the virulence factors of this bacterium. The production of siderophores enables E. amylovora to overcome the conditions of iron limitation met in plant tissue, and may also protect the bacteria against active oxygen species produced through the Fenton reaction. In this paper, we have examined the ability of an iron chelator protein, encoded by the bovine lactoferrin gene, to reduce fire blight susceptibility in pear (Pyrus communis L.). Transgenic pear clones expressing this gene controlled by the CaMV35S promoter were produced by Agrobacterium tumefaciens mediated transformation. Transformants were analysed by RT-PCR and western blot to determine lactoferrin expression levels. Most transgenic clones demonstrated significant reduction of susceptibility to fire blight in vitro and in the greenhouse when inoculated by E. amylovora. These transgenic clones also showed a significant reduction of symptoms when inoculated with two other pear bacterial pathogens : Pseudomonas syringae pv. syringae and Agrobacterium tumefaciens. Moreover, we have shown that this increase in bacterial resistance was correlated with an increase in root ferric reductase level activity and leaf iron content. Despite negative effects on the growth of a few clones, our results indicate the potential of lactoferrin gene transformation to protect pear from fire blight through increased iron chelation.  相似文献   

6.
The bacterial plant pathogen Erwinia amylovora causes fire blight, a major disease threat to pome fruit production worldwide with further impact on a wide-range of Rosaceae species. Important factors contributing to the development of the disease were discovered in the last decades. Comparative genomics of the genera Erwinia and Pantoea is coming into focus with the recent availability of complete genome sequences. Insights from comparative genomics now position us to answer fundamental questions regarding the evolution of E. amylovora as a successful pathogen and the critical elements for biocontrol activity of Pantoea spp. This trove of new data promises to reveal novel determinants and to understand interactive pathways for virulence, host range and ecological fitness. The ultimate aim is now to apply genomics and identify the pathogen Achilles heels and antagonist mechanisms of action as targets for designing innovative control strategies for fire blight.  相似文献   

7.
8.
The fire blight pathogen Erwinia amylovora was assayed for survival under unfavourable conditions such as on nitrocellulose filters, in non‐host plants as well as in inoculated mature apples and in infested apple stem sections. In a sterile dry environment, an E. amylovora EPS (exopolysaccharide) mutant, and to a lesser extent its parental wild‐type strain decreased within 3 weeks to a low titre. However, under moist conditions the decrease of viable cells occurred only partially for both strains. Very low cell titres were recovered after application of E. amylovora onto the surface of tobacco leaves, whereas infiltration into the leaves produced lesions (hypersensitive response, HR), in which the bacteria survived in significant amounts. A similar effect was found for the necrotic zones of HR in tobacco leaves caused by E. pyrifoliae, by Pseudomonas syringae pathovars and HR‐deficient E. amylovora mutants or mutants deficient in EPS synthesis and disease‐specific genes. During 7 years of storage, the viability of E. amylovora in wood sections from fire blight‐infested apple trees declined to a low titre. In tissue of mature apples, E. amylovora cells slowly dispersed and could still be recovered after several weeks of storage at room temperature. A minimal risk of accidental dissemination of E. amylovora apart from infested host plants can experimentally not be excluded, but other data confirm a very low incidence of any long distance distribution.  相似文献   

9.
One hundred and thirty strains of Erwinia amylovora recovered from Spanish foci of fire blight from 1995 to 2000 were characterised and compared to reference strains from different sources and origins. Their rapid identification was performed by double antibody sandwich indirect (DASI) ELISA, using specific monoclonal antibodies against E. amylovora, and molecular confirmation by PCR using primers specific to the native plasmid pEA29. The Spanish strains of E. amylovora grew on different general and selective media producing typical colonies, except one of them that was deficient in levan production, whereas none of them grew on minimal agar medium with copper sulphate and low content of asparagine. All of them were susceptible to tetracycline, streptomycin, kasugamycin and oxolinic acid. Biochemical characterisation of selected strains by API 20E system revealed a great homogeneity, with 80% of the Spanish strains showing one of the two majority API 20E profiles described for E. amylovora, and the remaining strains showing minor differences. Pathogenicity on pear fruits and hypersensitivity reaction was confirmed, but a delayed reaction was observed for two Spanish strains. This is the first characterisation of a large collection of Spanish strains of E. amylovora.  相似文献   

10.
The number of described pathogenic and non-pathogenic Erwinia species associated with pome fruit trees, especially pear trees, has increased in recent years, but updated comparative information about their similarities and differences is scarce. The causal agent of the fire blight disease of rosaceous plants, Erwinia amylovora, is the most studied species of this genus. Recently described species that are pathogenic to pear trees include Erwinia pyrifoliae in Korea and Japan, Erwinia spp. in Japan, and Erwinia piriflorinigrans in Spain. E. pyrifoliae causes symptoms that are indistinguishable from those of fire blight in Asian pear trees, Erwinia spp. from Japan cause black lesions on several cultivars of pear trees, and E. piriflorinigrans causes necrosis of only pear blossoms. All these novel species share some phenotypic and genetic characteristics with E. amylovora. Non-pathogenic Erwinia species are Erwinia billingiae and Erwinia tasmaniensis that have also been described on pome fruits; however, less information is available on these species. We present an updated review on the phenotypic and molecular characteristics, habitat, pathogenicity, and epidemiology of E. amylovora, E. pyrifoliae, Erwinia spp. from Japan, E. piriflorinigrans, E. billingiae, and E. tasmaniensis. In addition, the interaction of these species with pome fruit trees is discussed.  相似文献   

11.
Summary Several strains of the enterobacterial groupErwinia herbicola (Enterobacter agglomerans) were screened for siderophore production. After 3 days of growth in a low-iron medium, all strains studied produced hydroxamate siderophores. The retention values of the main siderophore during thin-layer chromatography on silica gel plates and on HPLC reversed-phase columns were identical with those of an authentic sample of ferrioxamine E (norcardamine). Gas-chromatographic analysis of the HI hydrolyzate yielded succinic acid and 1,5-diaminopentane in equimolar amounts; fast-atom-bombardment (FAB) mass spectroscopy showed a molecular mass of 653 Da. Iron from55Fe-labelled ferrioxamine E was well taken up by iron-starved cells ofE. herbicola (K m=0.1 M,V max=8 pmol mg–1 min–1). However, besides ferrioxamine E (100%), several exogenous siderophores such as enterobactin (94.5%), ferric citrate (78.5%), coprogen (63.5%) and ferrichrome (17.5%) served as siderophores, suggesting the presence of multiple siderophore receptors in the outer membrane ofE. herbicola.  相似文献   

12.
Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.  相似文献   

13.
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.  相似文献   

14.
Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae‐infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined was about 30 times higher than previously determined. These isolates belong to four distinct clades, three of which display geographical clustering and one of which contains strains from various geographical locations (‘Widely Prevalent’ clade). Furthermore, we revealed that strains from the Widely Prevalent clade displayed a higher level of recombination with strains from a clade strictly from the eastern USA, which suggests that the Widely Prevalent clade probably originated from the eastern USA before it spread to other locations. Finally, we detected variations in virulence in the SI E. amylovora strains on immature pear, and identified the genetic basis of one of the low‐virulence strains as being caused by a single nucleotide polymorphism in hfq, a gene encoding an important virulence regulator. Our results provide insights into the population structure, distribution and evolution of SI E. amylovora in North America and Europe.  相似文献   

15.
The bacterium Erwinia amylovora causes fire blight, a serious and widespread disease of several pome fruit and ornamental plants. The use of suitable detection tools is essential for preventing its dissemination and, according to the protocol of the European and Mediterranean Plant Protection Organization, the isolation and further identification of E. amylovora is the only conclusive test of its presence. However, bacterial growth on solid media can be hampered when the pathogen is suffering stressful conditions in pome fruit or in other habitats. Since copper is an essential micronutrient that, in E. amylovora, also increases the exopolysaccharide production in rich-nutrient media, we have designed a non-selective differential medium containing 1.5 mM CuSO4 to improve the recovery of E. amylovora from plants under unfavorable conditions. In this new medium named Recovery Erwinia amylovora-Stressed Cells (RESC), its colonies were easily distinguished by a light yellow color and a high mucus production. The plating recovery of several E. amylovora strains in vitro and from naturally infected samples was significantly improved with respect to other media routinely employed, particularly when the pathogen was suffering stressful conditions. Thus, the recovery of stressed E. amylovora cells (after UV irradiation, nutrient deprivation, or the presence of copper ions in non-copper-complexing media) was significantly enhanced on RESC medium, and their culturability period extended. Therefore, RESC is a useful and valuable medium for the isolation of E. amylovora when adverse conditions in the natural environment are expected.  相似文献   

16.
The fire blight susceptible apple cultivar Malus × domestica Borkh. cv. ‘Gala’ was transformed with the candidate fire blight resistance gene FB_MR5 originating from the crab apple accession Malus × robusta 5 (Mr5). A total of five different transgenic lines were obtained. All transgenic lines were shown to be stably transformed and originate from different transgenic events. The transgenic lines express the FB_MR5 either driven by the constitutive CaMV 35S promoter and the ocs terminator or by its native promoter and terminator sequences. Phenotyping experiments were performed with Mr5‐virulent and Mr5‐avirulent strains of Erwinia amylovora, the causal agent of fire blight. Significantly less disease symptoms were detected on transgenic lines after inoculation with two different Mr5‐avirulent E. amylovora strains, while significantly more shoot necrosis was observed after inoculation with the Mr5‐virulent mutant strain ZYRKD3_1. The results of these experiments demonstrated the ability of a single gene isolated from the native gene pool of apple to protect a susceptible cultivar from fire blight. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene‐for‐gene interaction in the host–pathogen relationship Mr5–E. amylovora.  相似文献   

17.
Iron deprivation of Erwinia amylovora CFBP1430, a species causing fire blight on Pomoïdeae, was shown to induce the production of siderophores of the desferrioxamine (dfo) family and two outer membrane polypeptides with apparent molecular weight of about 70 and 80 kDa, respectively. Cyclic dfo E was characterized as the major metabolite. Phage MudIIpR13 insertional mutagenesis and screening on CAS-agar medium yielded three dfo non-producing and one overproducing clones. These clones failed to grow in the presence of the Fe(III) chelator EDDHA and were determined further as dfo and ferrioxamine transport negative mutants, respectively. The transport mutant which appeared to lack the 70 kDa polypeptide in the outer membrane allowed the purification of dfo E. Growth under iron limitation of dfo negative mutants was stimulated with ferrioxamine E and B but not with other ferrisiderophores tested. The host DNA sequence flanking the left terminal part of the MudIIpR13 prophage responsible for the transport mutation was cloned and used to probe a parental gene library by DNA-DNA hybridization. Two recombinant cosmids restoring the transport mutation to normal were identified. Both cosmids also conferred the ability to utilize ferrioxamine B and E as iron sources on a FhuE1 mutant of Escherichia coli. This correlated with the production of an additional polypeptide of 70 kDa in the outer membrane of E. coli transconjugants, thus confirming that this protein serves the ferrioxamine receptor function (FoxR) in E. amylovora.R. Kachadourian and A. Dellagi have contributed equally to this work.  相似文献   

18.
Summary Iron deprivation ofErwinia herbicola (Enterobacter agglomerans) induces the biosynthesis of six high-M r outer-membrane proteins and large amounts of ferrioxamine E. Mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine and selection with ferrimycin A yielded mutants ofE. herbicola K4 (wild type), defective in the expression of a 76-kDa outer-membrane protein, as determined by SDS/polyacrylamide gel electrophoresis. While in bioassays wild-type cells showed growth promotion in the presence of ferrioxamines (B, D1, D2, E, G), enterobactin, citrate, ferrichrome and coprogen, these mutants failed to respond to ferrioxamines. Moreover, experiments with55Fe-labelled siderophores confirmed that iron transport mediated by ferrioxamine E and B in the mutants was completely inhibited, whereas iron transport by other hydroxamate siderophores, such as ferrichrome and coprogen was unaffected. The results are evidence that the 76-kDa protein in the outer membrane represents the receptor protein (FoxA) for ferrioxamines inE. herbicola.  相似文献   

19.
Several analytical techniques such as gas chromatography–mass spectrometry, proton transfer reaction–mass spectrometry and laser photoacoustic detection, were used to characterize the volatiles emitted by Erwinia amylovora and other plant-pathogenic bacteria. Diverse volatiles were found to be emitted by the different bacterial species examined. The distinct blend of volatiles produced by bacteria allowed their identification using an electronic nose (e-nose). The present study reports the discrimination of E. amylovora, the fire blight pathogen, from other plant-associated bacteria using an e-nose based on metal oxide semiconductor sensors. Two different approaches were used for bacterial identification. The first one was the direct comparison of the odorous profiles of unknown bacterial isolates with four selected reference species. The second approach was the use of previously developed databases representing the odorous variability among several bacterial species. Using these two strategies, the e-nose successfully identified the isolates in 87.5 and 62.5% of the cases, respectively. Finally, the profiling of the volatiles emitted by E. amylovora lead to identify some metabolic markers with a potential biological activity in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号