首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classically, mouse embryonic stem (ES) cells are transfected by electroporation, a method that requires a large number of cells. Here we describe a protocol using a liposome based transfection agent that is a very simple, rapid and cost effective way of transiently transfecting very low numbers of ES cells. We found this method very useful in screening a large number of ES clones when working with inducible expression systems in which at least two elements are required for regulated expression of the gene of interest. After stable transfection of the first component, clones can be easily and rapidly screened for expression of the gene of interest by transiently transfecting the second component of the system using this protocol.  相似文献   

2.
Murine embryonic stem cells (mESCs) inoculated at passage P13 with the mycoplasma species M. hominis, M. fermentans and M. orale and cultured over 20 passages showed reduced growth rate and viability (P < 0.0001) compared to control mESCs. Spectral karyotypic analysis of mycoplasma-infected mESCs showed a number of non-clonal chromosomal aberrations which increased with the duration of infection. The differentiation status of the infected mESCs was most affected at passage P13+6 where the infection was strongest and 46.3% of the mESCs expressed both POU5F1 and SSEA-1 markers whereas 84.8% of control mESCs expressed both markers. The percentage of germline chimeras from mycoplasma-infected mESCs was examined after blastocyst injection and embryo transfer to suitable recipients at different passages and, compared to the respective control group, was most affected at passage P13+5 (50% vs. 90%; P < 0.07). Further reductions were obtained at the same passage in the percentage of litters born (50% vs. 100%; P < 0.07) and in the percentage of pups born (22% vs. 45%; P < 0.001). Thirty three chimeras (39.8%) obtained from blastocyst injection with mycoplasma-infected mESCs showed reduced body weight (P < 0.0001), nasal discharge, osteoarthropathia, and cachexia. Flow cytometric analysis of plasma from chimeras produced with mycoplasma-infected mESCs revealed statistically significant differences in the proportions of T-cells and increased levels of IgG1 (P < 0.001), IgG2a (P < 0.05) and IgM (P < 0.05), anti-DNA antibodies (P < 0.05) and rheumatoid factor (P < 0.01). The present data indicate that mycoplasma contamination of mESCs affects various cell parameters, germline transmission, and postnatal development of the resulting chimeras.  相似文献   

3.
4.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

5.
Embryonic stem (ES) cells provide a unique tool for cell-mediated gene transfer and targeted gene mutations due to the possibility of in vitro selection of desired genotypes. When selected cells contribute to the germ line in chimaeric embryos, transgenic animals may be generated with modified genetic traits. Though the ES cell approach has up to now been limited to mice, there is an increasing interest to develop this technology in both model and commercial fish species, with so far promising results in the medaka and zebrafish. In this study, we present evidence regarding a long-term stable cell line (SaBE-1c), derived from embryonic cells of the aquaculture marine fish Sparus aurata which has been characterized for (i) cell proliferation, (ii) chromosome complement, (iii) molecular markers, and (iv) in vitro tests of pluripotency by alkaline phosphatase (AP) staining, telomerase activity, and induced cell differentiation. These cells have proved their pluripotent capacities by in vitro tests. Furthermore, we have demonstrated their ability to produce chimaeras and to contribute to the formation of tissues from all three embryonic germ layers. These features suggest that SaBE-1c cells have the potential for multiple applications for the ES technology in fish, with the added value of originating from an economically important species.  相似文献   

6.
Smad5 is an intracellular transducer of TGF-β signals. Targeted disruption of murine Smad5 gene resulted in embryonic lethal. To study the function of Smad5 in organgenesis, we generated Smad5 double knockout ES cells by homologous recombination. We deleted the neo gene of the Smad5 targeted ES cells using Cre-LoxP system. Smad5 double knockout ES cells were obtained by transfecting the targeted ES cells using the same targeting construct. The results of chimeric study showed that Smad5 might play an important role during the development of heart and neural tube. Smad5 double knockout ES cells formed teratoma when injected subcutaneously into nude mice. They differentiated into several types of cells, including neural cells, muscle cells, chondrocytes, endothelial cells and glandaceous cells. Smad5 double knockout ES cells are useful for studying the function of Smad5 mediated TGF- β during the organgenesis and the in vitro differentiation of ES cells.  相似文献   

7.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

8.
Human embryonic stem cells(hESCs) can self-renew indefinitely and differentiate into all cell types in the human body.Therefore,they are valuable in regenerative medicine,human developmental biology and drug discovery.A number of hESC lines have been derived from the Chinese population, but limited of them are available for research purposes.Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin.These hESCs express alkaline phosphatase and hE...  相似文献   

9.
10.
Although both the H1 and HES2 human embryonic stem cell lines (NIH codes: WA01 and ES02, respectively) are capable of forming all three germ layers and their derivatives, various lines of evidence including the need to use different protocols to induce cardiac differentiation hint that they have distinct preferences to become chamber-specific heart cells. However, a direct systematic comparison has not been reported. Here we electrophysiologically demonstrated that the distributions of ventricular-, atrial- and pacemaker-like derivatives were indeed different (ratios = 39:61:0 and 64:33:3 for H1 and HES2, respectively). Based on these results, we hypothesized the differences in their cardiogenic potentials are imprinted in the proteomes of undifferentiated H1 and HES2. Using multiplexing, high-resolution 2-D Differential In Gel Electrophoresis (DIGE) to minimize gel-to-gel variations that are common in conventional 2-D gels, a total of 2000 individual protein spots were separated. Of which, 55 were >2-fold differentially expressed in H1 and HES2 (p < 0.05) and identified by mass spectrometery. Bioinformatic analysis of these protein differences further revealed candidate pathways that contribute to the H1 and HES2 phenotypes. We conclude that H1 and HES2 have predetermined preferences to become ventricular, atrial, and pacemaker cells due to discrete differences in their proteomes. These results improve our basic understanding of hESCs and may lead to mechanism-based methods for their directed cardiac differentiation into chamber-specific cardiomyocytes.  相似文献   

11.
The post-thaw recovery of mouse embryonic stem cells (mESCs) is often assumed to be adequate with current methods. However as this publication will show, this recovery of viable cells actually varies significantly by genetic background. Therefore there is a need to improve the efficiency and reduce the variability of current mESC cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of four mESC lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1 mESCs) through a comparative study characterizing the membrane permeability characteristics and membrane integrity osmotic tolerance limits of each cell line. In the companion paper, these values were used to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures, and then these predicted optimal protocols were validated against standard freezing protocols.  相似文献   

12.
Summary Recently, it was demonstrated that the application of slow-cooling cryopreservation protocols to adherent human embryonic stem (hES) cell colonies, cultured on matrigel or murine embryonic fibroblast feeder layers, resulted in marked improvement in postthaw viability and reduction in cell differentiation. However, the use of commercially available culture plates for this purpose presents several limitations. Most obviously, these plates are not designed for cryopreservation or to withstand the low temperatures encountered during liquid nitrogen cryopreservation, or both. The physical storage of cryopreserved plates is another consideration, in addition to difficulty in maintaining sterile conditions in liquid nitrogen storage and during the thaw phase in a water bath. Hence, a redesign of the cell culture plate for the cryopreservation of adherent hES cell colonies is proposed. In this model, a culture plate made of synthetic materials resistant to storage at −196° C of liquid nitrogen is designed, with readily attachable screw-cap culture wells that function as a replacement for cryovial storage. The detachable wells facilitate storage and after thawing can easily be reattached to a specially designed holding plate. Currently, there are no commercially available cell culture plates using this design concept. The proposed design is envisioned to facilitate the cryopreservation of intact adherent hES cell colonies that could assist the development of automated systems for handling bulk quantities of cells.  相似文献   

13.
14.
In vitro developmental model systems have been an important tool for advancing basic research in the embryology and teratology fields. The rat and zebrafish embryo models have had broad utility in both fields for many decades. Furthermore embryonic stem cells, applied as a basic research tool, have broad applications across the development fields and many other fields including cancer, regeneration and epigenetic research. These models have historically been applied in mechanistic studies but were also considered promising for evaluating teratogenic potential of test substances. In recent years, in vitro teratogenicity assays have become an area of interest for supporting the 3 Rs (reduction, refinement, and replacement of animal use). Generation of such assays also provides a means to facilitate early assessment of test agents at a higher throughput without excessive use of animals. In this review, the three models are described with an emphasis of how they are being developed and/or refined to support teratogenicity assessment as screening tools. An overview of the state of the science and future directions are described. Birth Defects Research (Part C) 90:87–98, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
《Developmental cell》2023,58(12):1022-1036.e4
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

16.
Succinyl con A and acetyl con A both stimulated epithelial cells to produce similar yields of tissue plasminogen activator (t-PA) to those previously obtained with native con A. However, unlike con A, the derivatized lectins did not adversely affect cell morphology and viability, and cells treated with succinyl con A could secrete t-PA for a prolonged period. Con A and the two derivatives produced similar morphological effects in Bowes melanoma cells, but t-PA production was not increased. Elevated cyclic nucleotide concentrations did not affect t-PA production from epithelial cells, but calcium ionophore treatment generated t-PA yields similar to those obtained with lectins. Azacytidine, which enhanced t-PA production from epithelial cells, did not increase yields from Bowes melanoma cells, and also sodium butyrate, reported to increase t-PA yields from human endothelial cells, had no effect on either cell line.  相似文献   

17.
Incubations in vitro of GA1, labeled with 3H in the terminal D-galactopyranosyl group, with nonradioactive CMP-NeuNAc in the presence of homogenates of C21 rat brain glial cells, NIE mouse neuroblastoma cells, 3T3 mouse fibroblasts, SV 40-transformed 3T3 cells, chick embryo fibroblasts, Rous sarcoma virus-transformed chick embryo fibroblasts, and 9-day old rat brain resulted in all cases in the formation in high yield of GM1b, in which the neuraminidase-labile NeuNAc group is linked at O-3 of the terminal D-galactosyl residue, as shown by permethylation studies. No trace of the naturally occurring neuraminidase-stable GM1a was detected in any case. In addition, with NIE cells, and normal and RSV-transformed chick embryo fibroblasts, a disialosylganglioside (GD1) differing from GD1a and GD1b, and bearing only one substituent at O-3 of the terminal D-galactopyranosyl residue was formed. It was also biosynthesized from GM1b and CMP-NeuNAc by NIE and chick embryo cells but not by C21 cells, or rat brain. However, C21 cells and rat brain were capable of synthesizing GD1a from GM1a. Periodate oxidation degraded both NeuNAc groups in GD1 to a 7-carbon fragm:nt, indicating lack of substitution at O-8. GM1b could not be detected as a natural product in rat brain.  相似文献   

18.
Mouse embryonic stem cells (mESCs) rely on a cytokine named leukemia inhibitory factor (LIF) to maintain their undifferentiated state and pluripotency. However, the progress of mESC research is restricted and limited to highly funded laboratories due to the cost of commercial LIF. Here we presented the homemade hLIF which is biologically active. The hLIF cDNA was cloned into two different vectors in order to produce N-terminal His6-tag and Trx-His6-tag hLIF fusion proteins in Origami(DE3) Escherichia coli. The His6-hLIF fusion protein was not as soluble as the Trx-His6-hLIF fusion protein. One-step immobilized metal affinity chromatography (IMAC) was done to recover high purity (>95% pure) His6-hLIF and Trx-His6-hLIF fusion proteins with the yields of 100 and 200 mg/l of cell culture, respectively. The hLIF fusion proteins were identified by Western blot and verified by mass spectrometry (LC/MS/MS). The hLIF fusion proteins specifically promote the proliferation of TF-1 cells in a dose-dependent manner. They also demonstrate the potency to retain the morphology of undifferentiated mESCs, in that they were positive for mESC markers (Oct-4, Sox-2, Nanog, SSEA-1 and alkaline phosphatase activity). These results demonstrated that the N-terminal fusion tags of the His6-hLIF and Trx-His6-hLIF fusion proteins do not interfere with their biological activity. This expression and purification approach to produce recombinant hLIF is a simple, reliable, cost effective and user-friendly method.  相似文献   

19.
Endothelial cells express two different classical cadherins, vascular endothelial (VE) cadherin and neural (N) cadherin, having distinct functions in the vascular system. VE-cadherin is specific to endothelial adherens junctions and is strictly necessary for vascular morphogenesis. On the contrary, N-cadherin shows diffuse localization on the cell surface and interacts with mural cells for vessel stabilization. In this study, we sought to clarify the cellular mechanisms leading to the distinct cellular locations and functions of the two cadherins in the endothelium. VE-cadherin has been shown to be responsible for the junctional exclusion of N-cadherin. Using several endothelial models, we demonstrate that this property is dependent on VE-cadherin binding to p120 catenin (p120ctn). Moreover, although in the absence of VE-cadherin N-cadherin can localize to cell contacts, angiogenesis remains impaired, demonstrating that endothelial junction formation is not sufficient for normal vessel development. Interestingly, we show that VE-cadherin, but not N-cadherin, is partially associated with cholesterol-enriched microdomains. Lipid raft-associated-VE-cadherin is characterized by a very high level of p120ctn association, and this association is necessary for VE-cadherin recruitment into lipid rafts. Altogether, our results indicate a critical role for p120ctn in regulating the membrane distribution of endothelial cadherins with functional consequences in terms of cadherin stabilization and intracellular signaling.  相似文献   

20.
To investigate the regulation of plant histone H2A gene expression, we isolated two H2A genes (TH254 and TH274) from wheat, which encode two variants of H2A. Both genes had an intron in the coding region. In the promoters, some characteristic sequences, such as Oct and Nona motifs, which are conserved among plant histone genes, were located in a short region (about 120 bp) upstream from the putative TATA box. Transient expression analyses of promoter activity with H2A–GUS fusion genes using tobacco protoplasts revealed novel types of positive cis/-acting sequences in the TH254 promoter: a direct repeat of a 13 bp sequence (AGTTACATTATTG) and a stretch composed of an AT-rich sequence (ATATAGAAAATTAAAA) and a G-box (CACGTG). Quantitative S1 assay of the mRNA amounts from the TH254/GUS and TH274/GUS chimeric genes in stably transformed and cell cycle-synchronized tobacco cell lines showed that the promoters of both genes contained at least one cis/-acting element responsible for S phase-specific expression. Histochemical analysis of transgenic tobacco plants carrying the chimeric genes showed that the promoters of the two H2A genes were active in developing seedlings and flower organs but were regulated in a different manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号