首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The prevalence of obesity continues to increase significantly, with the largest rise in the African‐American adolescents. Genetic contributions to obesity are being identified with the advent of genome‐wide association studies (GWAS). Specifically, variants of the fat mass and obesity associated (FTO) gene have been associated with obesity in populations of European descent. The studies in African Americans have been inconclusive. To further evaluate the association of the FTO gene and adiposity in African Americans, we genotyped 47 single‐nucleotide polymorphisms (SNPs), including seven SNPs previously reported to be significant in the literature in a cohort consisting of 561 non‐Hispanic white and 497 African‐American individuals. Analysis of our data showed 17 SNPs to be associated with BMI Z‐score (BMI‐Z) in our study population. The strongest association was found in the African Americans. The most significant SNP was rs8057044, which was associated with BMI‐Z in the African Americans (P = 0.00054). SNP rs9939609 was found to be significant in the non‐Hispanic white population (P = 0.028). Our data confirm the association between FTO and adiposity suggesting that FTO is a childhood obesity susceptibility gene. Our data also identify a novel SNP of the FTO gene (rs8057044) that is associated with measures of adiposity in the African‐American population.  相似文献   

2.
To test the hypothesis that µ‐opioid receptor (OPRM1) gene might be involved in the prevalence of obesity, a population‐based association study was carried out in Uyghur population. Overall 10 tagging single‐nucleotide polymorphisms (tSNPs) in OPRM1 gene were genotyped. We showed that genotypes of rs1799971 in exon 1, and rs514980 and rs7773995 in intron 1 were significantly associated with the BMI. The BMI significantly decreased by the copy of minor allele carriers of rs1799971 which is a nonsynonymous functional polymorphism, whereas the BMI significantly increased by the copy of minor allele carriers of rs514980 and rs7773995. Subsequently, subjects were subsequently divided into case (BMI ≥ 28) and control group (BMI < 24). Significant associations were again observed at rs1799971, rs514980, and rs7773995, regardless of controlling for covariates age and gender or not. The stronger evidence for association was found under the additive model for each of the three SNPs. The per‐allele odds ratio of the minor allele for obesity was 0.75 (95% confidence interval 0.58–0.96, P = 0.023) for rs1799971, 1.68 (95% confidence interval 1.14–2.49, P = 0.009) for rs514980, and 1.80 (95% confidence interval 1.14–2.85, P = 0.012) for rs7773995, respectively. Our observations give the evidence that OPRM1 gene is involved in the prevalence of obesity in Uyghurs.  相似文献   

3.
A resistin gene polymorphism is associated with body mass index in women   总被引:9,自引:0,他引:9  
The potential association of resistin (RETN) gene variability with obesity-related phenotypes was investigated in 585 non-diabetic individuals of European descent. The polymorphism studied (–420 C>G) is located in the RETN gene 5-flanking region. A significant association between the polymorphism and body mass index and waist circumference was observed in the women subsample (n=356), where the G allele was somewhat less frequent in the overweight/obese group than in normal-weight individuals (0.25 vs. 0.32; p=0.040; OR=0.70 [0.50–0.98]). Female carriers of the G-allele presented a lower mean BMI than C/C homozygotes (25.5 vs. 26.8 kg/m2; p=0.010). Furthermore, when women were stratified by menopausal status, the association was restricted to premenopausal women (C/C homozygotes, mean BMI=26.3 kg/m2; G-carriers, 24.4 kg/m2; p=0.014). Our findings suggest that RETN gene variation has gender-specific effects on BMI and warrants further investigation of its implications for the development of obesity.  相似文献   

4.
Zhao LJ  Xiong DH  Pan F  Liu XG  Recker RR  Deng HW 《Human genetics》2008,124(2):171-177
The plasma level of the tumor necrosis factor-alpha receptor 2 (TNFR2) is associated with obesity phenotypes. However, the genetic polymorphisms for such an association have rarely been explored and are generally unknown. In this study, by employing a large sample of 1,873 subjects from 405 Caucasian nuclear families, we explored the association of 12 SNPs of the TNFR2 gene and obesity-related phenotypes, including body mass index (BMI), fat mass, and percentage fat mass (PFM). The within-family quantitative transmission disequilibrium test, which is robust to sample stratification, was implemented to evaluate the association of TNFR2 gene with obesity phenotypes. Evidence of association was obtained at SNP9 (rs5746059) with fat mass (P = 0.0002), BMI (P = 0.002), and PFM (P = 0.0006). The contribution of this polymorphism to the variation of fat mass and PFM was 6.24 and 7.82%, respectively. Individuals carrying allele A at the SNP9 site had a 4.6% higher fat mass and a 2.5% increased PFM compared to noncarriers. The results remained significant even after correction for multiple testing. Evidence of association between the TNFR2 gene and obesity phenotypes are also found in 700 independent Chinese Han and 1,000 random Caucasians samples. The results suggest that the TNFR2 gene polymorphisms contribute to the variation of obesity phenotypes.  相似文献   

5.
Lean body mass (LBM) and age at menarche (AAM) are two important complex traits for human health. The aim of this study was to identify pleiotropic genes for both traits using a powerful bivariate genome-wide association study (GWAS). Two studies, a discovery study and a replication study, were performed. In the discovery study, 909622 single nucleotide polymorphisms (SNPs) were genotyped in 801 unrelated female Han Chinese subjects using the Affymetrix human genome-wide SNP array 6.0 platform. Then, a bivariate GWAS was performed to identify the SNPs that may be important for LBM and AAM. In the replication study, significant findings from the discovery study were validated in 1692 unrelated Caucasian female subjects. One SNP rs3027009 that was bivariately associated with left arm lean mass and AAM in the discovery samples (P=7.26×10?6) and in the replication samples (P=0.005) was identified. The SNP is located at the upstream of DARC (Duffy antigen receptor for chemokines) gene, suggesting that DARC may play an important role in regulating the metabolisms of both LBM and AAM.  相似文献   

6.
Polymorphisms near the melanocortin‐4 receptor (MC4R) gene locus are associated with body weight. Recent studies have shown that they influence insulin sensitivity and incidence of the metabolic syndrome. Thus, we hypothesized that the candidate single‐nucleotide polymorphism (SNP) rs17782313 near MC4R additionally influences body fat distribution and its change during lifestyle intervention. To test this, 343 German subjects were genotyped for SNP rs17782313. Body composition was assessed using magnetic resonance technique. Subjects were characterized by an oral glucose tolerance test (OGTT). A subgroup of 242 subjects participated in a 9‐month lifestyle intervention. In the overall cohort, the C allele was associated with a higher BMI (P = 0.0013), but had no impact on glucose tolerance or insulin sensitivity (all P ≥ 0.10). There was an effect of the SNP on total body fat (P = 0.022) and nonvisceral fat (P = 0.017), but not on liver fat and visceral fat (all P ≥ 0.33). In the subgroup undergoing lifestyle intervention, SNP rs17782313 had no impact on changes in body weight or fat distribution. Despite an association with BMI and nonvisceral adipose tissue, the SNP rs17782313 did not influence visceral adipose tissue. Thus, this candidate SNP for human obesity may preferentially affect the accumulation of subcutaneous adipose tissue. Furthermore, the variation near MC4R has no effect on success of weight loss during lifestyle intervention.  相似文献   

7.
8.
CD36 is a membrane receptor with a wide variety of functions, including the regulation of energy metabolism, fat storage, and adipocyte differentiation. To assess the relationship between CD36 gene single‐nucleotide polymorphisms (SNPs) and obesity in adolescents, we evaluated the relationship between CD36 SNPs and the risk of obesity in a case–control study composed of 307 obese (age = 15.0 ± 1.1 years) and 339 normal‐weight adolescents (age = 14.6 ± 1.1 years). To validate the results, we assessed the relation between the same SNPs and percentage of body fat (BF%) and BMI in 1,151 European adolescents (age = 14.8 ± 1.4 years). SNPs with a minor allele frequency >0.10 were selected to tag CD36. Genotyping was performed on an Illumina system. Four SNPs (rs3211867, rs3211883, rs3211908, and rs1527483) were associated with increased risk of obesity in the case–control study (odds ratio (OR) (95% confidence interval)): 1.96 (1.26–3.04], P = 0.003; 1.73 (1.16–2.59), P = 0.007; 2.42 (1.47–4.01), P = 0.0005 and 1.95 (1.25–3.05), P = 0.003, respectively). The same four SNPs were associated with higher BMI (P < 0.05) and BF% (P < 0.04) in the validation study. Further analyses identified a haplotype (frequency: 0.05) carrying the minor allele of these SNPs as being associated with obesity (OR: 2.28; P = 0.0008) in the case–control study and with excess adiposity (i.e., higher BF% (P = 0.03) and BMI (P = 0.04)) in the validation study. Our data suggest that genetic variability at the CD36 gene locus could be associated with body weight variability in European adolescents but these findings require replication.  相似文献   

9.

Background

To determine the association of the A55T and K153R polymorphisms of the Myostatin gene with obesity, abdominal obesity and lean body mass (LBM) in Asian Indians in north India.

Materials and Methods

A total of 335 subjects (238 men and 97 women) were assessed for anthropometry, % body fat (BF), LBM and biochemical parameters. Associations of Myostatin gene polymorphisms were evaluated with anthropometric, body composition and biochemical parameters. In A55T polymorphism, BMI (p = 0.04), suprailiac skinfold (p = 0.05), total skinfold (p = 0.008), %BF (p = 0.002) and total fat mass (p = 0.003) were highest and % LBM (p = 0.03) and total LBM (Kg) were lowest (p = 0.04) in subjects with Thr/Thr genotype as compared to other genotypes. Association analysis of K153R polymorphism showed that subjects with R/R genotype had significantly higher BMI (p = 0.05), waist circumference (p = 0.04), %BF (p = 0.04) and total fat mass (p = 0.03), and lower %LBM (p = 0.02) and total LBM [(Kg), (p = 0.04)] as compared to other genotypes. Using a multivariate logistic regression model after adjusting for age and sex, subjects with Thr/Thr genotype of A55T showed high risk for high %BF (OR, 3.92, 95% Cl: 2.61–12.41), truncal subcutaneous adiposity (OR, 2.9, 95% Cl: 1.57–6.60)] and low LBM (OR, 0.64, 95% CI: 0.33–0.89) whereas R/R genotype of K153R showed high risk of obesity (BMI; OR, 3.2, 95% CI: 1.2–12.9; %BF, OR, 3.6, 95% CI: 1.04–12.4), abdominal obesity (OR, 2.12, 95% CI: 2.71–14.23) and low LBM (OR, 0.61, 95% CI: 0.29–0.79).

Conclusions/Significance

We report that variants of Myostatin gene predispose to obesity, abdominal obesity and low lean body mass in Asian Indians in north India.  相似文献   

10.
Ghrelin exerts a stimulatory effect on appetite and regulates energy homeostasis. Ghrelin gene variants have been shown to be associated with metabolic traits, although there is evidence suggesting linkage and association with obesity and the ghrelin receptor (GHSR). We hypothesized that these genes are good candidates for susceptibility to obesity. Direct sequencing identified 12 ghrelin single‐nucleotide polymorphisms (SNPs) and 8 GHSR SNPs. The 10 common SNPs were genotyped in 1,275 obese subjects and in 1,059 subjects from a general population cohort of European origin. In the obesity case‐control study, the GHSR SNP rs572169 was found to be associated with obesity (P = 0.007 in additive model, P = 0.001 in dominant model, odds ratio (OR) 1.73, 95% confidence interval (1.23–2.44)). The ghrelin variant, g.A265T (rs4684677), showed an association with obesity (P = 0.009, BMI adjusted for age and sex) in obese families. The ghrelin variant, g.A‐604G (rs27647), showed an association with insulin levels at 2‐h post‐oral glucose tolerance test (OGTT) (P = 0.009) in obese families. We found an association between the eating behavior “overeating” and the GHSR SNP rs2232169 (P = 0.02) in obese subjects. However, none of these associations remained significant when corrected for multiple comparisons. Replication of the nominal associations with obesity could not be confirmed in a German genome‐wide association (GWA) study for rs4684677 and rs572169 polymorphisms. Our data suggest that common polymorphisms in ghrelin and its receptor genes are not major contributors to the development of polygenic obesity, although common variants may alter body weight and eating behavior and contribute to insulin resistance, in particular in the context of early‐onset obesity.  相似文献   

11.
Homocysteine (Hcy) is a potential risk factor for age-related cataract (ARC). Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme for Hcy metabolism, and variants of MTHFR may affect MTHFR enzyme activity. This study mainly evaluated the associations between variants in MTHFR gene, plasma MTHFR enzyme activity, total Hcy (tHcy) levels and ARC risk in Chinese population. Four single nucleotide polymorphisms (SNPs) in MTHFR gene were genotyped using the high-resolution melting (HRM) method in 502 ARC patients (mean age, 70.2 [SD, 9.0], 46.0% male) and 890 healthy controls (mean age, 67.1 [SD, 11.1], 47.6% male). The plasma MTHFR activity, folic acid (FA), vitamins B12 and B6 levels were detected by enzyme-linked immunosorbent assays (ELISA). The plasma tHcy levels were measured by an automated enzymatic assay. After the Bonferroni correction, the minor allele T of SNP rs1801133 showed a significant association with an increased risk of overall ARC (OR = 1.26, P = 0.003). Consistent association was also found between SNP rs1801133 and cortical ARC risk (OR = 1.44, P = 0.003). Haplotype analyses revealed an adverse effect of the haplotype "C-A-T-C" (alleles in order of SNPs rs3737967, rs1801131, rs1801133 and rs9651118) on ARC risk (OR = 1.55, P = 0.003). Moreover, in a joint analysis of SNPs rs9651118 and rs1801133, subjects with two unfavorable genotypes had a 1.76-fold increased risk of ARC compared with the reference group, and a statistically significant dose-response trend (Ptrend = 0.001) was also observed. Further, in healthy controls and patients with cortical ARC, the allele T of SNP rs1801133 and the increasing number of unfavorable genotypes were significantly correlated with decreased MTHFR activity as well as increased tHcy levels. However, there was no significant association between FA, vitamins B12, B6 levels and MTHFR variants. Our data indicated that variants in MTHFR gene might individually and jointly influence susceptibility to ARC by affecting MTHFR enzyme activity and tHcy levels.  相似文献   

12.
The genome‐wide association study by Herbert et al. identified the INSIG2 single‐nucleotide polymorphism (SNP) rs7566605 as contributing to increased BMI in ethnically distinct cohorts. The present study sought to further clarify the matter, by testing whether SNPs of INSIG2 influenced quantitative adiposity or glucose homeostasis traits in Hispanics of the Insulin Resistance Atherosclerosis Family Study (IRASFS). Using a tagging SNP approach, rs7566605 and 31 additional SNPs were genotyped in 1,425 IRASFS Hispanics. SNPs were tested for association with six adiposity measures: BMI, waist circumference (WAIST), waist‐to‐hip ratio (WHR), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and VAT to SAT ratio (VSR). SNPs were also tested for association with fasting glucose (GFAST), fasting insulin (FINS), and three measures obtained from the frequently sampled intravenous glucose tolerance test: insulin sensitivity (SI), acute insulin response (AIR), and disposition index (DI). Most prominent association was observed with direct computed tomography (CT)‐measured adiposity phenotypes, including VAT, SAT, and VSR (P values range from 0.007 to 0.044 for rs17586756, rs17047718, rs17047731, rs9308762, rs12623648, and rs11673900). Multiple SNP associations were observed with all glucose homeostasis traits (P values range from 0.001 to 0.031 for rs17047718, rs17047731, rs2161829, rs10490625, rs889904, and rs12623648). Using BMI as a covariate in evaluation of glucose homeostasis traits slightly reduced their association. However, association with adiposity and glucose homeostasis phenotypes is not significant following multiple comparisons adjustment. Trending association after multiple comparisons adjustment remains suggestive of a role for genetic variation of INSIG2 in obesity, but these results require validation.  相似文献   

13.
14.
The common single‐nucleotide polymorphism in the FTO (fat mass and obesity associated) gene is consistently associated with an increased risk of obesity. However, the knowledge of a potential modifying effect of the FTO gene on changes in body weight achieved by lifestyle intervention is limited. We examined whether the FTO gene variant (rs9939609, T/A) is associated with body weight and BMI and long‐term weight changes in the Finnish Diabetes Prevention Study (DPS). Altogether, 522 (aged 40–65 years; BMI ≥25 kg/m2) subjects with impaired glucose tolerance (IGT) were randomized to control and lifestyle intervention groups. SNP rs9939609 was genotyped from 502 subjects. At baseline, those with the AA genotype had higher BMI than subjects with other genotypes (P = 0.006). The association was observed in women (P = 0.016) but not in men. During the 4‐year follow‐up, the subjects with the AA genotype had consistently the highest BMI (P = 0.009) in the entire study population. The magnitude of weight reduction was greater in the intervention group, but the risk allele did not modify weight change in either of the groups. Our results confirm the association between the common FTO variant and BMI in a cross‐sectional setting and during the long‐term lifestyle intervention. We did not observe association between FTO variant and the magnitude of weight reduction achieved by long‐term lifestyle intervention. Based on the results from the DPS, it is unlikely that the common variant of the FTO gene affects the success of lifestyle modification on weight loss.  相似文献   

15.
A recent meta‐analysis of genome‐wide association studies has identified six new risk‐loci for common obesity. We studied whether these risk loci influence the distribution of body fat depots. We genotyped 1,469 nondiabetic subjects for the single‐nucleotide polymorphisms (SNPs) TMEM18 rs6548238, KCTD15 rs11084753, GNPDA2 rs10938397, SH2B1 rs7498665, MTCH2 rs10838738, and NEGR1 rs2815752. We assessed BMI, waist circumference, total body fat, and lean body mass (bioimpedance). All subjects underwent an oral glucose tolerance test (OGTT) for estimation of insulin sensitivity. In 332 subjects, we measured total adipose tissue (TAT), visceral adipose tissue (VAT), nonvisceral adipose tissue (NVAT), liver fat content, and intramyocellular lipids (IMCLs) using whole‐body magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). In the dominant inheritance model, the risk alleles of TMEM18 rs6548238 and MTCH2 rs10838738 were nominally associated with higher BMI (P = 0.04, both). The risk allele of TMEM18 rs6548238 was additionally associated with higher waist circumference and total body fat (P ≤ 0.03), the risk allele of NEGR1 rs2815752 with higher waist circumference (P = 0.05) and unexpectedly with lower BMI (P = 0.01). In the MR cohort, we found an association of the risk allele of SH2B1 rs7498665 with higher VAT (P = 0.009) and of GNPDA2 rs10938397 with increased IMCLs (P = 0.03). After Bonferroni correction for multiple comparisons (corrected α‐level: P = 0.0085), none of the SNPs was significantly associated with measures of adiposity or body fat distribution (all P > 0.009, dominant inheritance model). Therefore, our results suggest that these new obesity SNPs, despite their influence on BMI, are neither associated with a metabolically unfavorable nor with a favorable body composition.  相似文献   

16.
Several common variants in the intron 1 of FTO (fat mass and associated obesity) gene have been reliably associated with BMI and obesity in European populations. We analyzed two variants (rs9939609 and rs8050136) in 4,189 Chinese Han individuals and conducted a meta‐analysis of published studies in Asian population to investigate whether these variants are associated with type 2 diabetes (T2D) and obesity in Asian population. In this study, both the minor allele A of rs9939609 and the minor allele A of rs805136 were associated with increased risk of T2D, independent of measures of BMI; the odds ratios (ORs) per copy of the risk allele were 1.19 for rs9939609 (95% confidence interval (CI), 1.04–1.37; P = 0.01) and 1.22 for rs8050136 (95% CI, 1.07–1.40; P = 0.004) after adjusting for age, sex, and BMI. Our results also showed association with risk of obesity (rs9939609: OR = 1.39 (95% CI 1.04–1.85), P = 0.02; rs8050136: OR = 1.45 (95% CI 1.09–1.93), P = 0.01) but no association with overweight. These results were consistent with the pooled results from our meta‐analysis study (for diabetes, rs8050136, P = 1.3 × 10?3; rs9939609, P = 9.8 × 10?4; for obesity, rs8050136, P = 2.2 × 10?7; rs9939609, P = 9.0 × 10?9). Our findings indicate that the two variants (rs9939609 and rs8050136) in the FTO gene contribute to obesity and T2D in the Asian populations.  相似文献   

17.
Ha E  Yang SH  Yoo KI  Chung IS  Lee MY  Bae JH  Seo JC  Chung JH  Shin DH 《Life sciences》2008,82(19-20):1040-1043
A body of evidence indicates obesity is an inflammatory state with chronic activation of the immune system. The interleukin 4 receptor (IL4R) single nucleotide polymorphism (SNP), rs 180275 (1902A>G) is well recognized for its association with atopy and other inflammatory diseases. We assessed the possible association of rs 180275 and rs 1805010 with obesity in Korean population. Study subject consisting of 876 Koreans were divided into three groups: subjects with 1) BMI<25, 2) BMI between 25 and 27, and 3) BMI>27. Analyses of genotype distributions and allele frequencies of study subjects revealed that rs 180275 polymorphism was associated with an increase in BMI in Korean population (P=0.009 and 0.011, respectively) while no association was found between rs 1805010 and obesity. We observed significantly lower percentage of rs 180275 G allele in subjects with BMI>27 than in subjects with BMI< or =27 (9.9% vs. 16.0%). Logistic regression analysis revealed that the odds ratio (OR) for an increase in BMI associated with the G vs. A allele was 0.57 [95% Confidence interval (CI)=0.39-0.85, p=0.002], which strongly implicates the protective role of rs 180275 G allele against an increase in BMI. Haplotype analysis revealed no association was present between rs 180275 and rs 1805010 polymorphisms. The frequency of rs 180275 G allele is significantly lower in subjects with BMI>27, suggesting the protective role of IL4R rs 180275 G allele against an increase in BMI in Korean population.  相似文献   

18.
Polymorphisms in the fat mass- and obesity-associated (FTO) gene have been identified to be associated with obesity and diabetes in large genome-wide association studies. We hypothesized that variation in the FTO gene has an impact on whole body fat distribution and insulin sensitivity, and influences weight change during lifestyle intervention. To test this hypothesis, we genotyped 1,466 German subjects, with increased risk for type 2 diabetes, for single-nucleotide polymorphism rs8050136 in the FTO gene and estimated glucose tolerance and insulin sensitivity from an oral glucose tolerance test (OGTT). Distribution of fat depots was quantified using whole body magnetic resonance (MR) imaging and spectroscopy in 298 subjects. Two-hundred and four subjects participated in a lifestyle intervention program and were examined after a follow-up of 9 months. In the cross-sectional analysis, the A allele of rs8050136 in FTO was associated with a higher BMI, body fat, and lean body mass (all P < 0.001). There was a significant effect of variation in the FTO gene on subcutaneous fat (P < or = 0.05) and a trend for liver fat content, nonvisceral adipose tissue, and visceral fat (all P < or = 0.1). However, the single-nucleotide polymorphism was not associated with insulin sensitivity or secretion independent of BMI (all P > 0.05). During lifestyle intervention, there was also no influence of the FTO polymorphism on changes in body weight or fat distribution. In conclusion, despite an association with BMI and whole body fat distribution, variation in the FTO locus has no effect on the success of a lifestyle intervention program.  相似文献   

19.
Various Pacific Island populations have experienced a marked increase in the prevalence of obesity in past decades. This study examined the association of a promoter polymorphism of the leptin gene (LEP), G-2548A (rs7799039), and two non-synonymous single nucleotide polymorphisms of the leptin receptor gene (LEPR), K109R (rs1137100) and Q223R (rs1137101), with body weight, body mass index (BMI) and obesity (BMI ≥ 30) in Pacific Islanders. A total of 745 Austronesian (AN)-speaking participants were analyzed after adjusting for age, gender, and population differences. The results revealed that carriers of the 223Q alleles of LEPR had significantly higher body weight (P = 0.0009) and BMI (P = 0.0022) than non-carriers (i.e., 223R homozygotes); furthermore, the 223Q carriers also had a significantly higher risk of obesity in comparison to non-carriers (P = 0.0222). The other two polymorphisms, G-2548A and K109R, were associated with neither body weight, BMI, nor obesity. The 223Q allele was widely found among the AN-speaking study subjects, thus suggesting that the LEPR Q223R polymorphism is one of the factors contributing to the high prevalence of obesity in the Pacific Island populations.  相似文献   

20.
Inflammation is an important factor linking abdominal obesity with insulin resistance and related cardiometabolic risk. A genome‐wide association study of adiposity‐related traits performed in the Quebec Family Study (QFS) revealed that a single‐nucleotide polymorphism (SNP) in the LRRFIP1 gene (rs11680012) was associated with abdominal adiposity (P = 4.6 × 10–6).

Objective:

The objective of this study was to assess the relationship between polymorphisms in LRRFIP1 gene and adiposity (BMI, fat mass (FM), waist circumference (WC), and computed tomography‐derived areas of total, subcutaneous and visceral abdominal adipose tissue) and markers of inflammation (C‐reactive protein (CRP) and interleukin‐6 (IL‐6)).

Design and Methods:

Using Sequenom, 16 tag SNPs in the LRRFIP1 gene, capturing 78% of the genetic variation, were genotyped in 926 participants of the QFS.

Results:

Eight SNPs (rs7575941, rs3769053, rs11689421, rs3820808, rs11680012, rs3806505, rs6739130, and rs11686141) showed evidence of association with at least two adiposity phenotypes and plasma levels of one marker of inflammation. The strongest evidence of association was observed with rs11680012, which explained 1.8–3.4% of the variance in areas of abdominal adiposity and 2.0% of the variation in CRP levels. Carriers of the rare allele of rs11680012 had ~30% more abdominal adiposity (P values between 2.7 × 10–4 and 3.8 × 10–6) and 75% higher CRP levels (P = 1.6 × 10–4) than the common allele in age and sex adjusted data. Rs11680012 is a G/C SNP converting an arginine into a threonine and this amino acid substitution may potentially alter exonic splicing.

Conclusion:

This gene may therefore represent a potential interesting target to investigate in further functional studies on adiposity and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号