首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Hrmova M  Fincher GB 《Carbohydrate research》2007,342(12-13):1613-1623
Higher plant, family GH3 beta-D-glucan glucohydrolases exhibit exo-hydrolytic and retaining (e-->e) mechanisms of action and catalyze the removal of single glucosyl residues from the non-reducing termini of beta-D-linked glucosidic substrates, with retention of anomeric configuration. The broad specificity beta-D-glucan glucohydrolases are likely to play roles in cell wall re-modelling, turn-over of cell wall components and possibly in plant defence reactions against pathogens. Crystal structures of the barley beta-D-glucan glucohydrolase, obtained from both native enzyme and from the enzyme in complex with a substrate analogues and mechanism-based inhibitors, have enabled the basis of substrate specificity, the mechanism of catalysis, and the role of domain movements during the catalytic cycle to be defined in precise molecular terms. The active site of the enzyme forms a shallow 'pocket' that is located at the interface of two domains of the enzyme and accommodates two glucosyl residues. The propensity of the enzyme to hydrolyze a broad range of substrates with (1-->2)-, (1-->3)-, (1-->4)- and (1-->6)-beta-D-glucosidic linkages is explained from crystal structures of the enzyme in complex with non-hydrolysable S-glycoside substrate analogues, and from molecular modelling. During binding of gluco-oligosaccharides, the glucosyl residue at subsite -1 is locked in a highly constrained position, but the glucosyl residue at the +1 subsite is free to adjust its position between two tryptophan residues positioned at the entry of the active site pocket. The flexibility at subsite +1 and the projection of the remainder of the substrate away from the pocket provide a structural rationale for the capacity of the enzyme to accommodate and hydrolyze glucosides with different linkage positions and hence different overall conformations. While mechanism-based inhibitors with micromolar Ki constants bind in the active site of the enzyme and form esters with the catalytic nucleophile, transition-state mimics bind with their 'glucose' moieties distorted into the 4E conformation, which is critical for the nanomolar binding of these inhibitors to the enzyme. The glucose product of the reaction, which is released from the non-reducing termini of substrates, remains bound to the beta-D-glucan glucohydrolase in the -1 subsite of the active site, until a new substrate molecule approaches the enzyme. If dissociation of the glucose from the enzyme active site could be synchronized throughout the crystal, time-resolved Laue X-ray crystallography could be used to follow the conformational changes that occur as the glucose product diffuses away and the incoming substrate is bound by the enzyme.  相似文献   

2.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

3.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

4.
Earthworm fibrinolytic enzyme component A (EFEa) from Eisenia fetida is a strong fibrinolytic enzyme that not only directly degrades fibrin, but also activates plasminogen. Proteolytic assays further revealed that it cleaved behind various P1 residue types. The crystal structure of EFEa was determined using the MIR method and refined to 2.3A resolution. The enzyme, showing the overall polypeptide fold of chymotrypsin-like serine proteases, possesses essential S1 specificity determinants characteristic of elastase. However, the beta strand at the west rim of the S1 specificity pocket is significantly elongated by a unique four-residue insertion (Ser-Ser-Gly-Leu) after Val217, which not only provides additional substrate hydrogen binding sites for distal P residues, but also causes extension of the S1 pocket at the south rim. The S2 subsite of the enzyme was partially occluded by the bulky side-chain of residue Tyr99. Structure-based inhibitor modeling demonstrated that EFEa's S1 specificity pocket was preferable for elastase-specific small hydrophobic P1 residues, while its accommodation of long and/or bulky P1 residues was also feasible if enhanced binding of the substrate and induced fit of the S1 pocket were achieved. EFEa is thereby endowed with relatively broad substrate specificity, including the dual fibrinolysis. The presence of Tyr99 at the S2 subsite indicates a preference for P2-Gly, while an induced fit of Tyr99 was also suggested for accommodation of bigger P2 residues. This structure is the first reported for an earthworm fibrinolytic enzyme component and serine protease originating from annelid worms.  相似文献   

5.
Mulakala C  Reilly PJ 《Proteins》2005,61(3):590-596
AutoDock is a small-molecule docking program that uses an energy function to score docked ligands. Here AutoDock's grid-based method for energy evaluation was exploited to evaluate the force exerted by Fusarium oxysporum Cel7B on the atoms of docked cellooligosaccharides and a thiooligosaccharide substrate analog. Coupled with the interaction energies evaluated for each docked ligand, these forces give insight into the dynamics of the ligand in the active site, and help to elucidate the relative importance of specific enzyme-substrate interactions in stabilizing the substrate transition-state conformation. The processive force on the docked substrate in the F. oxysporum Cel7B active site is less than half of that on the docked substrate in the Hypocrea jecorina Cel7A active site. Hydrogen bonding interactions of the enzyme with the C2 hydroxyl group of the glucosyl residue in subsite -2 and with the C3 hydroxyl group of the glucosyl residue in subsite +1 are the most significant in stabilizing the distorted14B transition-state conformation of the glucosyl residue in subsite -1. The force calculations also help to elucidate the mechanism that prevents the active site from fouling.  相似文献   

6.
Dispersin B (DspB), a family 20 beta-hexosaminidase from the oral pathogen Aggregatibacter actinomycetemcomitans, cleaves beta(1,6)-linked N-acetylglucosamine polymer. In order to understand the substrate specificity of DspB, we have undertaken to characterize several conserved and nonconserved residues in the vicinity of the active site. The active sites of DspB and other family 20 hexosaminidases possess three highly conserved acidic residues, several aromatic residues and an arginine at subsite -1. These residues were mutated using site-directed mutagenesis and characterized for their enzyme activity. Our results show that a highly conserved acid pair in beta-hexosaminidases D183 and E184, and E332 play a critical role in the hydrolysis of the substrates. pH activity profile analysis showed a shift to a higher pH (6.8) in the optimal activity for the E184Q mutant, suggesting that this residue might act as the acid/base catalyst. The reduction in k(cat) observed for Y187A and Y278A mutants suggests that the Y187 residue (unique to DspB) located on a loop might play a role in substrate specificity and be a part of subsite +1, whereas the hydrogen-bond interaction between Y278A and the N-acetyl group might help to stabilize the transition state. Mutation of W237 and W330 residues abolished hydrolytic activity completely suggesting that alteration at these positions might collapse the binding pocket for the N-acetyl group. Mutation of the conserved R27 residue (to R27A or R27K) also caused significant reduction in k(cat) suggesting that R27 might be involved in stabilization of the transition state. From these results, we conclude that in DspB, and possibly in other structurally similar family 20 hydrolases, some residues at the active site assist in orienting the N-acetyl group to participate in the substrate-assisted mechanism, whereas other residues such as R27 and E332 assist in holding the terminal N-acetylglucosamine during the hydrolysis.  相似文献   

7.
BACKGROUND: Barley beta-D-glucan glucohydrolases represent family 3 glycoside hydrolases that catalyze the hydrolytic removal of nonreducing glucosyl residues from beta-D-glucans and beta-D-glucooligosaccharides. After hydrolysis is completed, glucose remains bound in the active site. RESULTS: When conduritol B epoxide and 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside are diffused into enzyme crystals, they displace the bound glucose and form covalent glycosyl-enzyme complexes through the Odelta1 of D285, which is thereby identified as the catalytic nucleophile. A nonhydrolyzable S-glycosyl analog, 4(I), 4(III), 4(V)-S-trithiocellohexaose, also diffuses into the active site, and a S-cellobioside moiety positions itself at the -1 and +1 subsites. The glycosidic S atom of the S-cellobioside moiety forms a short contact (2.75 A) with the Oepsilon2 of E491, which is likely to be the catalytic acid/base. The glucopyranosyl residues of the S-cellobioside moiety are not distorted from the low-energy 4C(1) conformation, but the glucopyranosyl ring at the +1 subsite is rotated and translated about the linkage. CONCLUSIONS: X-ray crystallography is used to define the three key intermediates during catalysis by beta-D-glucan glucohydrolase. Before a new hydrolytic event begins, the bound product (glucose) from the previous catalytic reaction is displaced by the incoming substrate, and a new enzyme-substrate complex is formed. The second stage of the hydrolytic pathway involves glycosidic bond cleavage, which proceeds through a double-displacement reaction mechanism. The crystallographic analysis of the S-cellobioside-enzyme complex with quantum mechanical modeling suggests that the complex might mimic the oxonium intermediate rather than the enzyme-substrate complex.  相似文献   

8.
Glycoside hydrolase family (GH) 11 xylanase A from Bacillus subtilis (BsXynA) was subjected to site-directed mutagenesis to probe the role of aglycon active site residues with regard to activity, binding of decorated substrates and hydrolysis product profile. Targets were those amino acids identified to be important by 3D structure analysis of BsXynA in complex with substrate bound in the glycon subsites and the + 1 aglycon subsite. Several aromatic residues in the aglycon subsites that make strong substrate–protein interactions and that are indispensable for enzyme activity, were also important for the specificity of the xylanase. In the + 2 subsite of BsXynA, Tyr65 and Trp129 were identified as residues that are involved in the binding of decorated substrates. Most interestingly, replacement of Tyr88 by Ala in the + 3 subsite created an enzyme able to produce a wider variety of hydrolysis products than wild type BsXynA. The contribution of the + 3 subsite to the substrate specificity of BsXynA was established more in detail by mapping the enzyme binding site of the wild type xylanase and mutant Y88A with labelled xylo-oligosaccharides. Also, the length of the cord – a long loop flanking the aglycon subsites of GH11 xylanases – proved to impact the hydrolytic action of BsXynA. The aglycon side of the active site cleft of BsXynA, therefore, offers great potential for engineering and design of xylanases with a desired specificity.  相似文献   

9.
The active site of porcine enteropeptidase (EC 3.4.21.9) was investigated in order to characterize better both catalytic and binding sites. The participation of a serine and a histidine residue in the catalytic process was fully confirmed and the two residues were located on the light chain of the enzyme. The binding site was found to be composed of at least 2 subsites S1 and S2. The subsite S1 (similar to the trypsin-binding site) is responsible for the interactions with the small substrates of trypsin and the lysine side chain of trypsinogen, while subsite S2 (probably a cluster of lysines) is responsible for the interactions with the polyanionic sequence found in all trypsinogens. Binding of substrate by subsite S2 led to an increased efficiency of the catalytic site which can be correlated to the known high specificity of enteropeptidase.  相似文献   

10.
Bacterial unsaturated glucuronyl hydrolases (UGLs) together with polysaccharide lyases are responsible for the complete depolymerization of mammalian extracellular matrix glycosaminoglycans. UGL acts on various oligosaccharides containing unsaturated glucuronic acid (DeltaGlcA) at the nonreducing terminus and releases DeltaGlcA through hydrolysis. In this study, we demonstrate the substrate recognition mechanism of the UGL of Bacillus sp. GL1 by determining the X-ray crystallographic structure of its substrate-enzyme complexes. The tetrasaccharide-enzyme complex demonstrated that at least four subsites are present in the active pocket. Although several amino acid residues are crucial for substrate binding, the enzyme strongly recognizes DeltaGlcA at subsite -1 through the formation of hydrogen bonds and stacking interactions, and prefers N-acetyl-d-galactosamine and glucose rather than N-acetyl-d-glucosamine as a residue accommodated in subsite +1, due to the steric hindrance.  相似文献   

11.
Aminopeptidase P (APPro) is a manganese-dependent enzyme that cleaves the N-terminal amino acid from polypeptides where the second residue is proline. APPro shares a similar fold, substrate specificity, and catalytic mechanism with methionine aminopeptidase and prolidase. To investigate the roles of conserved residues at the active site, seven mutant forms of APPro were characterized kinetically and structurally. Mutation of individual metal ligands selectively abolished binding of either or both Mn(II) atoms at the active site, and none of these metal-ligand mutants had detectable catalytic activity. Mutation of the conserved active site residues His243 and His361 revealed that both are required for catalysis. We propose that His243 stabilizes substrate binding through an interaction with the carbonyl oxygen of the requisite proline residue of a substrate and that His361 stabilizes substrate binding and the gem-diol catalytic intermediate. Sequence, structural, and kinetic analyses reveal that His350, conserved in APPro and prolidase but not in methionine aminopeptidase, forms part of a hydrophobic binding pocket that gives APPro its proline specificity. Further, peptides in which the required proline residue is replaced by N-methylalanine or alanine are cleaved by APPro, but they are extremely poor substrates due to a loss of interactions between the prolidyl ring of the substrate and the hydrophobic proline-binding pocket.  相似文献   

12.
Substrate-related potent inhibitors of brain metalloendopeptidase   总被引:10,自引:0,他引:10  
Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of these derivatives, N-[1(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, inhibited the enzyme in a competitive manner with a Ki of 16 nM. The data indicate that the carboxyl group of the N-(1-carboxy-3-phenylpropyl) moiety coordinates with the active site zinc atom and that the remaining part of the inhibitor is necessary for interaction with the substrate recognition site of the enzyme. Replacement of the 1-carboxy-3-phenylpropyl group by a carboxymethyl group decreased the inhibitory potency by more than 3 orders of magnitude, emphasizing the importance of the hydrophobic phenyl group for inhibitor binding to a hydrophobic pocket at the S1 subsite. Replacement of the Tyr residue by an Ala residue decreased the inhibitory potency by more than 20-fold. Changes in the structure of the residue interacting with the S1' subsite could cause a more than 60-fold change in inhibition. The inhibitors were either ineffective or only weakly inhibitory against membrane-bound metalloendopeptidase ("enkephalinase", EC 3.4.24.11), an enzyme highly active in rabbit kidney but also present in brain. The data indicate the presence of an extended binding site in the enzyme with residues interacting with S1, S1', and S3' subsites largely determining inhibitor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.  相似文献   

14.
The active sites of a spectrum of beta-glucan endohydrolases with distinct, but related substrate specificities have been probed using a series of epoxyalkyl beta-glycosides of glucose, cellobiose, cellotriose, laminaribiose, laminaritriose, 3O-beta-D-glucosyl-cellobiose and 4O-beta-D-glucosyl-laminaribiose with different aglycon chain lengths. The inactivation of each of the endohydrolases by these compounds results from active site-directed inhibitor action, as indicated by the dependence of the inactivation rate on pH, glycosyl chain length and linkage position, aglycon length, and the protective effect of disaccharides derived from the natural substrates. Comparisons of inhibitor specificity between a Bacillus subtilis 1,3;1,4-beta-D-glucan 4-glucanohydrolase (EC 3.2.1.73), a Streptomyces cellulase (EC 3.2.1.4), a Schizophyllum commune cellulase (EC 3.2.1.4), a Rhizopus arrhizus 1,3-(1,3;1,4)-beta-D-glucan 3(4)-glucanohydrolase (EC 3.2.1.6), and a Nicotiana glutinosa 1,3-beta-D-glucan 3-glucanohydrolase (EC 3.2.1.39) demonstrated different tolerances for glycosyl linkage positions in the inactivation process and a critical role of aglycon length reflecting differences in the active site geometry of the enzymes. For the B. subtilis endohydrolase it was concluded that the aglycon residue of the inhibitor spans the glycosyl binding subsite occupied by the 3-substituted glucosyl residue involved in the glucosidic linkage cleaved in the natural substrate. Appropriate positioning of the inhibitor epoxide group with respect to the catalytic amino acids in the active site is crucial to the inactivation step and the number of glucosyl residues in the inhibitor affects aglycon chain length specificity. The importance of this effect differs between the glucanases tested and may be related to the number of glycosyl binding subsites in the active site.  相似文献   

15.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

16.
We have determined the crystal structure of Streptococcus mutans dextran glucosidase, which hydrolyzes the α-1,6-glucosidic linkage of isomaltooligosaccharides from their non-reducing ends to produce α-glucose. By using the mutant of catalytic acid Glu236→Gln, its complex structure with the isomaltotriose, a natural substrate of this enzyme, has been determined. The enzyme has 536 amino acid residues and a molecular mass of 62,001 Da. The native and the complex structures were determined by the molecular replacement method and refined to 2.2 Å resolution, resulting in a final R-factor of 18.3% for significant reflections in the native structure and 18.4% in the complex structure. The enzyme is composed of three domains, A, B and C, and has a (β/α)8-barrel in domain A, which is common to the α-amylase family enzymes. Three catalytic residues are located at the bottom of the active site pocket and the bound isomaltotriose occupies subsites −1 to +2. The environment of the glucose residue at subsite −1 is similar to the environment of this residue in the α-amylase family. Hydrogen bonds between Asp60 and Arg398 and O4 atom of the glucose unit at subsite −1 accomplish recognition of the non-reducing end of the bound substrate. The side-chain atoms of Glu371 and Lys275 form hydrogen bonds with the O2 and O3 atoms of the glucose residue at subsite +1. The positions of atoms that compose the scissile α-1,6-glucosidic linkage (C1, O6 and C6 atoms) are identical with the positions of the atoms in the scissile α-1,4 linkage (C1, O4 and C4 atoms) of maltopentaose in the α-amylase structure from Bacillus subtilis. The comparison with the α-amylase suggests that Val195 of the dextran glucosidase and the corresponding residues of α-1,6-hydrolyzing enzymes participate in the determination of the substrate specificity of these enzymes.  相似文献   

17.
Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.  相似文献   

18.
The structure of the complex between a catalytically compromised family 10 xylanase and a xylopentaose substrate has been determined by X-ray crystallography and refined to 3.2 A resolution. The substrate binds at the C-terminal end of the eightfold betaalpha-barrel of Pseudomonas fluorescens subsp. cellulosa xylanase A and occupies substrate binding subsites -1 to +4. Crystal contacts are shown to prevent the expected mode of binding from subsite -2 to +3, because of steric hindrance to subsite -2. The loss of accessible surface at individual subsites on binding of xylopentaose parallels well previously reported experimental measurements of individual subsites binding energies, decreasing going from subsite +2 to +4. Nine conserved residues contribute to subsite -1, including three tryptophan residues forming an aromatic cage around the xylosyl residue at this subsite. One of these, Trp 313, is the single residue contributing most lost accessible surface to subsite -1, and goes from a highly mobile to a well-defined conformation on binding of the substrate. A comparison of xylanase A with C. fimi CEX around the +1 subsite suggests that a flatter and less polar surface is responsible for the better catalytic properties of CEX on aryl substrates. The view of catalysis that emerges from combining this with previously published work is the following: (1) xylan is recognized and bound by the xylanase as a left-handed threefold helix; (2) the xylosyl residue at subsite -1 is distorted and pulled down toward the catalytic residues, and the glycosidic bond is strained and broken to form the enzyme-substrate covalent intermediate; (3) the intermediate is attacked by an activated water molecule, following the classic retaining glycosyl hydrolase mechanism.  相似文献   

19.
Acetate kinase catalyzes the reversible magnesium-dependent synthesis of acetyl phosphate by transfer of the ATP gamma-phosphoryl group to acetate. Inspection of the crystal structure of the Methanosarcina thermophila enzyme containing only ADP revealed a solvent-accessible hydrophobic pocket formed by residues Val(93), Leu(122), Phe(179), and Pro(232) in the active site cleft, which identified a potential acetate binding site. The hypothesis that this was a binding site was further supported by alignment of all acetate kinase sequences available from databases, which showed strict conservation of all four residues, and the recent crystal structure of the M. thermophila enzyme with acetate bound in this pocket. Replacement of each residue in the pocket produced variants with K(m) values for acetate that were 7- to 26-fold greater than that of the wild type, and perturbations of this binding pocket also altered the specificity for longer-chain carboxylic acids and acetyl phosphate. The kinetic analyses of variants combined with structural modeling indicated that the pocket has roles in binding the methyl group of acetate, influencing substrate specificity, and orienting the carboxyl group. The kinetic analyses also indicated that binding of acetyl phosphate is more dependent on interactions of the phosphate group with an unidentified residue than on interactions between the methyl group and the hydrophobic pocket. The analyses also indicated that Phe(179) is essential for catalysis, possibly for domain closure. Alignments of acetate kinase, propionate kinase, and butyrate kinase sequences obtained from databases suggested that these enzymes have similar catalytic mechanisms and carboxylic acid substrate binding sites.  相似文献   

20.
To assess the subsites involved in substrate binding in Aspergillus niger endopolygalacturonase II, residues located in the potential substrate binding cleft stretching along the enzyme from the N to the C terminus were subjected to site-directed mutagenesis. Mutant enzymes were characterized with respect to their kinetic parameters using polygalacturonate as a substrate and with respect to their mode of action using oligogalacturonates of defined length (n = 3-6). In addition, the effect of the mutations on the hydrolysis of pectins with various degrees of esterification was studied. Based on the results obtained with enzymes N186E and D282K it was established that the substrate binds with the nonreducing end toward the N terminus of the enzyme. Asn(186) is located at subsite -4, and Asp(282) is located at subsite +2. The mutations D183N and M150Q, both located at subsite -2, affected catalysis, probably mediated via the sugar residue bound at subsite -1. Tyr(291), located at subsite +1 and strictly conserved among endopolygalacturonases appeared indispensable for effective catalysis. The mutations E252A and Q288E, both located at subsite +2, showed only slight effects on catalysis and mode of action. Tyr(326) is probably located at the imaginary subsite +3. The mutation Y326L affected the stability of the enzyme. For mutant E252A, an increased affinity for partially methylesterified substrates was recorded. Enzyme N186E displayed the opposite behavior; the specificity for completely demethylesterified regions of substrate, already high for the native enzyme, was increased. The origin of the effects of the mutations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号