首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oxidative DNA damage is involved in mutagenesis, carcinogenesis, aging, radiation effects, and the action of several anticancer drugs. Accumulated evidence indicates that iron may play an important role in those processes. We studied the in vitro effect of low concentrations of Fe(II) alone or Fe(III) in the presence of reducing agents on supercoiled plasmid DNA. The assay, based on the relaxation and linearization of supercoiled DNA, is simple yet sensitive and quantitative. Iron mediated the production of single and double strand breaks in supercoiled DNA. Iron chelators, free radical scavengers, and enzymes of the oxygen reduction pathways modulated the DNA damage. Fe(III)-nitrilotriacetate (NTA) plus either H2O2, L-ascorbate, or L-cysteine produced single and double strand breaks as a function of reductant concentration. A combination of 0.1 microM Fe(III)-NTA and 100 microM L-ascorbate induced detectable DNA strand breaks after 30 min at 24 degrees C. Whereas superoxide dismutase was inhibitory only in systems containing H2O2 as reductant, catalase inhibited DNA breakage in all the iron-mediated systems studied. The effect of scavengers and enzymes indicates that H2O2 and .OH are involved in the DNA damaging process. These reactions may account for the toxicity and carcinogenicity associated with iron overload.  相似文献   

2.
Tannic acid (TA), a plant polyphenol, has been described as having antimutagenic, anticarcinogenic and antioxidant activities. Since it is a potent chelator of iron ions, we decided to examine if the antioxidant activity of TA is related to its ability to chelate iron ions. The degradation of 2-deoxyribose induced by 6 microM Fe(II) plus 100 microM H2O2 was inhibited by TA, with an I50 value of 13 microM. Tannic acid was over three orders of magnitude more efficient in protecting against 2-deoxyribose degradation than classical *OH scavengers. The antioxidant potency of TA was inversely proportional to Fe(II) concentration, demonstrating a competition between H2O2 and AT for reaction with Fe(II). On the other hand, the efficiency of TA was nearly unchanged with increasing concentrations of the *OH detector molecule, 2-deoxyribose. These results indicate that the antioxidant activity of TA is mainly due to iron chelation rather than *OH scavenging. TA also inhibited 2-deoxyribose degradation mediated by Fe(III)-EDTA (iron = 50 microM) plus ascorbate. The protective action of TA was significantly higher with 50 microM EDTA than with 500 microM EDTA, suggesting that TA removes Fe(III) from EDTA and forms a complex with iron that cannot induce *OH formation. We also provided evidence that TA forms a stable complex with Fe(II), since excess ferrozine (14 mM) recovered 95-96% of the Fe(II) from 10 microM TA even after a 30-min exposure to 100-500 microM H2O2. Addition of Fe(III) to samples containing TA caused the formation of Fe(II)n-TA, complexes, as determined by ferrozine assays, indicating that TA is also capable of reducing Fe(III) ions. We propose that when Fe(II) is complexed to TA, it is unable to participate in Fenton reactions and mediate *OH formation. The antimutagenic and anticarcinogenic activity of TA, described elsewhere, may be explained (at least in part) by its capacity to prevent Fenton reactions.  相似文献   

3.
This study was designed to investigate the direction of redox reactions of spermine and spermidine in the presence of iron and copper. The redox activity of spermine and spermidine was assessed using a variety of methods, including their ability to: (1) reduce Fe(3+) to Fe(2+) ions; (2) protect deoxyribose from oxidation by Fe(2+)-ethylene diaminetetraacetic acid, Fe(3+)-ethylene diaminetetraacetic acid systems with and without H(2)O(2); (3) protect DNA from damage caused by Cu(2+)-H(2)O(2), and Fe(2+)-H(2)O(2) with and without ascorbic acid; (4) inhibit H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence; (5) scavenge diphenyl-picryl-hydrazyl radical. Spermine and spermidine at concentration 1mM reduced 1.8+/-0.3 and 2.5+/-0.1 nmol of Fe(3+) ions during 20 min incubation. Both polyamines enhanced deoxyribose oxidation. The highest enhancement of 7.6-fold in deoxyribose degradation was found for combination of spermine with Fe(3+)-ethylene diaminetetraacetic acid. An 10mM spermine and spermidine decreased CuSO(4)-H(2)O(2)-ascorbic acid- and FeSO(4)-H(2)O(2)-ascorbic-induced DNA damage by 73+/-6, 69+/-4% and 90+/-5, 53+/-4%, respectively. They did not protect DNA from CuSO(4)-H(2)O(2) and FeSO(4)-H(2)O(2). Spermine apparently increased the CuSO(4)-H(2)O(2)-dependent injury to DNA. Polyamines attenuated H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence. Total light emission from specimens containing 10mM spermine or spermidine was attenuated by 85.3+/-1.5 and 87+/-3.6%. During 20 min incubation 1mM spermine or spermidine decomposed 8.1+/-1.4 and 9.2+/-1.8% of diphenyl-picryl-hydrazyl radical. These results demonstrate that polyamines of well known anti-oxidant properties may act as pro-oxidants and enhance oxidative damage to DNA components in the presence of free iron ions and H(2)O(2).  相似文献   

4.
Iron chelating agents are essential for treating iron overload in diseases such as beta-thalassemia and are potentially useful for therapy in non-iron overload conditions, including free radical mediated tissue injury. Deferoxamine (DFO), the only drug available for iron chelation therapy, has a number of disadvantages (e.g., lack of intestinal absorption and high cost). The tridentate chelator pyridoxal isonicotinoyl hydrazone (PIH) has high iron chelation efficacy in vitro and in vivo with high selectivity and affinity for iron. It is relatively non-toxic, economical to synthesize and orally effective. We previously demonstrated that submillimolar levels of PIH and some of its analogues inhibit lipid peroxidation, ascorbate oxidation, 2-deoxyribose degradation, plasmid DNA strand breaks and 5,5-dimethylpyrroline-N-oxide (DMPO) hydroxylation mediated by either Fe(II) plus H(2)O(2) or Fe(III)-EDTA plus ascorbate. To further characterize the mechanism of PIH action, we studied the effects of PIH and some of its analogues on the degradation of 2-deoxyribose induced by Fe(III)-EDTA plus ascorbate. Compared with hydroxyl radical scavengers (DMSO, salicylate and mannitol), PIH was about two orders of magnitude more active in protecting 2-deoxyribose from degradation, which was comparable with some of its analogues and DFO. Competition experiments using two different concentrations of 2-deoxyribose (15 vs. 1.5 mM) revealed that hydroxyl radical scavengers (at 20 or 60 mM) were significantly less effective in preventing degradation of 2-deoxyribose at 15 mM than 2-deoxyribose at 1.5 mM. In contrast, 400 microM PIH was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe(III) concentration, increasing the concentration of ligands (either EDTA or NTA) caused a significant reduction in the protective effect of PIH towards 2-deoxyribose degradation. We also observed that PIH and DFO prevent 2-deoxyribose degradation induced by hypoxanthine, xanthine oxidase and Fe(III)-EDTA. The efficacy of PIH or DFO was inversely related to the EDTA concentration. Taken together, these results indicate that PIH (and its analogues) works by a mechanism different than the hydroxyl radical scavengers. It is likely that PIH removes Fe(III) from the chelates (either Fe(III)-EDTA or Fe(III)-NTA) and forms a Fe(III)-PIH(2) complex that does not catalyze oxyradical formation.  相似文献   

5.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as beta-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against *OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for *OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of *OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on *OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

6.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical ((.-)OH) formation from H(2)O(2) in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited (.-)OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the (.-)OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H(2)O(2). These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

7.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using (32)P-5'-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H(2)O(2) generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

8.
Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs–pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA.  相似文献   

9.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using 32P-5′-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H2O2 generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

10.
Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

11.
M13 DNA was used as a source for single and double-stranded DNA. Free radical-induced damage to single and double stranded DNA was caused by asorbateliron and ascorbate/copper oxidative systems. The degree of breakage was estimated by running samples on an agarose gel and staining with ethidium bromide, followed by photographic analysis. DflA breakage was dependent on time and concentration of iron or copper ions. Zincions protected against damage caused by iron/asorbate both to single-stranded and double-stranded DNA. In contrast, in the copper/ascorbate system zinc ions protected only against the double-stranded DNA (replicative form of M13) breakage, and not against copper-mediated single-stranded DNA breakages. It seemed to amplify the efficiency of breakage. The protection provided to the replicative form in the copper/ascorbate system is much less effective than the protection to DNA in the iron/ascorbate system. These results support the notion that redox-inactive metal ions, that compete for iron or copper binding sites, could provide protection against transition metal-mediated and free radical-induced damage.  相似文献   

12.
《Free radical research》2013,47(1):509-515
M13 DNA was used as a source for single and double-stranded DNA. Free radical-induced damage to single and double stranded DNA was caused by asorbateliron and ascorbate/copper oxidative systems. The degree of breakage was estimated by running samples on an agarose gel and staining with ethidium bromide, followed by photographic analysis. DflA breakage was dependent on time and concentration of iron or copper ions. Zincions protected against damage caused by iron/asorbate both to single-stranded and double-stranded DNA. In contrast, in the copper/ascorbate system zinc ions protected only against the double-stranded DNA (replicative form of M13) breakage, and not against copper-mediated single-stranded DNA breakages. It seemed to amplify the efficiency of breakage. The protection provided to the replicative form in the copper/ascorbate system is much less effective than the protection to DNA in the iron/ascorbate system. These results support the notion that redox-inactive metal ions, that compete for iron or copper binding sites, could provide protection against transition metal-mediated and free radical-induced damage.  相似文献   

13.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

14.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

15.
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.  相似文献   

16.
Mapping oxidative DNA damage at nucleotide level   总被引:5,自引:0,他引:5  
DNA damage induced by reactive oxygen species (ROS) is considered an important intermediate in the pathogenesis of human conditions such as cancer and aging. By developing an oxidative-induced DNA damage mapping version of the Ligation-mediated polymerase chain reaction (LMPCR) technique, we investigated the in vivo and in vitro frequencies of DNA base modifications caused by ROS in the human p53 and PGK1 gene. Intact human male fibroblasts were exposed to 50 mM H2O2, or purified genomic DNA was treated with 5 mM H2O2, 100 μM Ascorbate, and 50 μM, 100 μM, or 100 μM of Cu(II), Fe(III), or Cr(VI) respectively. The damage pattern generated in vivo was nearly identical to the in vitro Cu(II) or Fe(III) damage patterns; damage was non-random with guanine bases heavily damaged. Cr(VI) generated an in vitro damage pattern similar to the other metal ions, although several unique thymine positions were damaged. Also, extra nuclear sites are a major contributor of metal ions (or metal-like ligands). These data show that the local probability of H2O2-mediated DNA damage is determined by the primary DNA sequence, with chromatin structure having a limited effect. The data suggest a model in which DNA-metal ion binding domains can accommodate different metalions. LMPCR's unique aspect is a blunt-end ligation of an asymmetric double-stranded linker, permitting exponential PCR amplification. An important factor limiting the sensitivity of LMPCR is the representation of target gene DNA relative to non-targeted genes; therefore, we recently developed a method to eliminate excess non-targeted genomic DNA. Restriction enzyme-digested genomic DNA is size fractionated by Continuous Elution Electrophoresis (CEE), capturing the target sequence of interest. The amount of target DNA in the starting material for LMPCR is enriched, resulting in a stronger amplification signal. CEE provided a 24-fold increase in the signal strength attributable to strand breaks plus modified bases created by ROS in the human p53 and PGK1 genes, detected by LMPCR. We are currently taking advantage of the enhanced sensitivity of target gene-enriched LMPCR to map DNA damage induced in human breast epithelial cells exposed to non-cytotoxic concentrations of H2O2.  相似文献   

17.
Redox-active metal ions such as Fe(II)\(III) and Cu(I)\(II) have been proposed to activate reactive oxygen and nitrogen species (RONS) and thus, perpetuate oxidative damage. Here, we show that concentrations of metal ions and EDTA complexes with superoxide-destroying activities equivalent to 1 U SOD are Fe(III) 5.1 microM, Mn(II) 0.77 microM, Cu(II)-EDTA 3.55 microM, Fe(III)-EDTA 2.34 microM, and Mn(II)-EDTA 1.38 microM. The most active being the aquated Cu(II) species which exhibited superoxide-destroying activity equivalent to 2U of SOD at 0.29 microM. Hydrogen peroxide-destroying activities were as follows Fe(III)-EDTA ca. 70 U/mg and aquated Fe(III) 141 U/mg. In contrast, DTPA prevented superoxide-destroying activity and significantly depleted hydrogen peroxide-destroying activity. In conclusion, non-protein bound transition metal ions may have significant anti-oxidant effects in biological systems. Caution should be employed in bioassays when chelating metal ions. Our results demonstrate that DTPA is preferential to EDTA for inactivating redox-active metal ions in bioassays.  相似文献   

18.
The role of intracellular iron, copper, and calcium in hydrogen peroxide-induced DNA damage was investigated using cultured Jurkat cells. The cells were exposed to low rates of continuously generated hydrogen peroxide by the glucose/glucose oxidase system, and the formation of single strand breaks in cellular DNA was evaluated by the sensitive method, single cell gel electrophoresis or "comet" assay. Pre-incubation with the specific ferric ion chelator desferrioxamine (0.1-5.0 mM) inhibited DNA damage in a time- and dose-dependent manner. On the other hand, diethylenetriaminepentaacetic acid (DTPA), a membrane impermeable iron chelator, was ineffective. The lipophilic ferrous ion chelator 1,10-phenanthroline also protected against DNA damage, while its nonchelating isomer 1,7-phenanthroline provided no protection. None of the above iron chelators produced DNA damage by themselves. In contrast, the specific cuprous ion chelator neocuproine (2,9-dimethyl-1,10-phenanthroline), as well as other copper-chelating agents, did not protect against H(2)O(2)-induced cellular DNA damage. In fact, membrane permeable copper-chelating agents induced DNA damage in the absence of H(2)O(2). These results indicate that, under normal conditions, intracellular redox-active iron, but not copper, participates in H(2)O(2)-induced single strand break formation in cellular DNA. Since BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), an intracellular Ca(2+)-chelator, also protected against H(2)O(2)-induced DNA damage, it is likely that intracellular Ca(2+) changes are involved in this process as well. The exact role of Ca(2+) and its relation to intracellular transition metal ions, in particular iron, needs to be further investigated.  相似文献   

19.
5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in lead poisoning and inborn porphyrias. It has been shown to produce reactive oxygen species upon metal-catalyzed aerobic oxidation and to cause oxidative damage to proteins, liposomes, DNA, and subcellular structures. Studies have also shown that ALA may condense to yield the cyclic product 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY). Here we propose that DHPY could be involved in DNA damage in the presence of high concentrations of ALA. Exposure of plasmid pUC19 DNA to low concentrations of DHPY (2-10 microM) in the presence of 0.1 mM Cu2+ ions causes DNA strand breaks, as demonstrated by agarose gel electrophoresis. It was also shown that in the presence of Cu2+ ions DHPY is able to increase the oxidation of monomeric 2'-deoxyguanosine to form 8-oxo-7,8-dihydro-2'-deoxyguanosine as inferred from high performance liquid chromatography measurements using electrochemical detection. Addition of a metal chelator (bathocuproine, 0.5 mM), the DNA compacting polyamines spermidine (1 mM) and spermine (1 mM) or antioxidant enzymes such as superoxide dismutase (10 microg/ml) and catalase (20 pg/ml) protect the DNA against these damages. The data presented here are discussed with respect to the increased frequency of liver cancer in patients with acute intermittent porphyria.  相似文献   

20.
The estrogen metabolites catecholestrogens (or hydroxyestrogens) are involved in carcinogenesis and the development of resistance to methotrexate. This induction of drug resistance correlates with the relative efficiency of catecholestrogens in the generation of reactive oxygen species (ROS) and the induction of DNA strand breaks. Although antioxidants can neutralize ROS, the generation of these reactive species by catecholestrogens can be enhanced by electron donors like NADH. Therefore, this study was undertaken to determine the ability of different thiol agents (GSH, NAC, DTT, DHLA) to either inhibit or enhance the level of DNA damage induced by the H(2)O(2) generating system 4-hydroxyestradiol/Cu(II). Our results show that GSH, DTT, and DHLA inhibited the induction of the 4-hydroxyestradiol/Cu(II)-mediated DNA damage, with GSH showing the best potential. In contrast, the GSH precursor NAC at low concentrations was able to enhance the level of oxidative damage, as observed with NADH. NAC can reduce Cu(II) to Cu(I) producing the radical NAC&z.rad;, which can generate the superoxide anion. However, the importance of this pathway appears to be relatively minor since the addition of NAC to the 4-hydroxyestradiol/Cu(II) system generates about 15 times more DNA strand breaks than NAC and Cu(II) alone. We suggest that NAC can perpetuate the redox cycle between the quinone and the semiquinone forms of the catecholestrogens, thereby enhancing the production of ROS. In conclusion, this study demonstrates the crucial importance of the choice of antioxidant as potential therapy against the negative biological effects of estrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号