首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Flight performance in Locusta is reduced following severance of the major afferent nerves to the corpora cardiaca or removal of the glandular lobes of the corpora cardiaca. These operations prevent the release of adipokinetic hormone and the consequent mobilization of stored lipid. However, locusts deprived of about 90% of their glandular lobe tissue, while flying poorly, did mobilize lipid. It is suggested that the remaining glandular parenchyma cells are capable of secreting enough hormone to stimulate lipid mobilization, but that the concentration may be inadequate to encourage lipid utilization. After removal of all the glandular lobe parenchyma, the blood carbohydrate concentration was temporarily depressed. Nevertheless flight performance was equally poor, both when haemolymph carbohydrate levels were low and when they had returned to normal. After the injection of trehalose into operated control locusts and locusts deprived of their glandular lobes, flight was still markedly poorer in the operated insects, even though the injection of trehalose prevented adipokinetic hormone release in the intact locust. It seems that the poor flight performance of locusts deprived of their glandular lobes cannot be fully explained by the simple absence of adipokinetic hormone.  相似文献   

2.
Adult desert locusts, Schistocerca gregaria , 3 days after inoculation with the entomopathogenic fungus Metarhizium anisopliae var acridum , had significantly less carbohydrate and lipid in the haemolymph than controls. This was not due to reduced food intake as 3 days of complete starvation had no effect on haemolymph titres of energy reserves in controls. Furthermore injection of an extract of the corpora cardiaca (the source of adipokinetic hormone, AKH) caused a large significant increase in haemolymph lipid in mycosed locusts, indicating the availability of significant quantities of lipid in the fat body, the target for AKH. Haemolymph carbohydrate declined significantly during tethered flight of control locusts but not in mycosed individuals. An injected supplement of trehalose significantly boosted flight performance of mycosed insects but not controls. The results are discussed in the light of the hypothesis that the poor flight capability of mycosed locusts is due in part to a fungus-induced reduction in mobile energy reserves.  相似文献   

3.
Abstract. The adipokinetic hormone (AKH-I and AKH-II) content of the corpora cardiaca from adult males of crowded (gregarious) and isolated (solitary) Locusta migratoria migratorioides (Reiche & Fairmaire) was quantified by reverse-phase high-performance liquid chromatography.Significantly less total hormone was found in the corpora cardiaca of crowded locusts than in those glands of isolated locusts at the age of 12–19 days after fledging.The ratio of AKH-I/AKH-II was higher in crowded than in isolated locusts at this age.From the age of 12–19 days to that of 25–30 days, AKH content increased significantly in the corpora cardiaca of crowded locusts, but no such increase was found in the glands of isolated locusts, and at 25–30 days there were no significant differences in the AKH content of the glands from crowded and isolated locusts.  相似文献   

4.
Summary Sectioning of the afferent nerves (NCCl and NCCll) to the locust corpus cardiacum prevents thein vivo release of adipokinetic hormone from the glandular lobes. This failure to release the hormone during flight and the consequent lack of lipid mobilisation brings about an impairment of flight performance which can be corrected by injections of corpus cardiacum extracts. Sectioning of the NCCl and NCCll reduces markedly the activity of the corpora allata. However, the poor flight performance of allatectomised locusts is not related to an inability to mobilise lipid since injections of corpus cardiacum extract which will mobilise fat body lipid in these locusts have no effect on flight performance. The results of individual sectioning of the NCCl and NCCll suggest that a double innervation of the glandular lobes functionsin vivo to control adipokinetic hormone release but that the NCCl alone may control the release of the diuretic hormone.  相似文献   

5.
After ovariectomy the concentrations of diacylglycerol and protein in the haemolymph increase markedly. The increased diacylglycerol is associated with increased quantities of the ‘heparin-precipitable’ protein (lipoprotein A) that carries diacylglycerol in the blood of normal resting locusts. After the injection of adipokinetic hormone (AKH), the blood of ovariectomized locusts contains only slight quantities of the ‘heparin-soluble’ lipoprotein A+ whereas this forms in large amounts in the blood of sham-operated locusts after AKH injection. After allatectomy, the increase in the adipokinetic response is slower and the full level of responsiveness observed in sham-operated locusts is never attained. Nevertheless, allatectomized locusts develop a marked adipokinetic response which tends to stabilize as they age; it does not deteriorate as it does in aged sham-operated locusts.The effects of ovariectomy on blood metabolites can be prevented completely by allatectomy, but only partially by cautery of the cerebral neurosecretory cells. Treatment with a juvenile hormone analogue (JHA R-20458) counteracts the effects of allatectomy in ovariectomized locusts.  相似文献   

6.
Hyperlipaemic response to adipokinetic hormone (AKH I) was demonstrated in both solitary and gregarious phases of the desert locust, Schistocerca gregaria gregaria. Time-course studies showed that the gregarious locusts had a faster response to the hormone than their solitary counterparts. At peak response time (90 min), the gregarious locusts were more sensitive to AKH I doses below 2 pmol while the solitary locusts had a higher response above this dose. Upon injection of the hormone, lipoprotein conversion occurred, resulting in the formation of the low density lipoprotein (LDLp). The LDLp formed in the gregarious locusts was much larger than that of the solitary locusts. The fat body lipid reserve (expressed as % fat body dry weight) was significantly (P < 0.01) higher in the gregarious (79.02 ± 2.77%) than in the solitary locusts (65.23 ± 2.55%). Triacylglycerol was the major lipid class representing 83.9 and 73.9% of the total lipids in gregarious and solitary locusts, respectively. The higher fat body lipid reserves and efficient LDLp formation in response to AKH in gregarious locusts compared to solitary locusts suggests a physiological adaptation for prolonged flights. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The effect on flight performance of various superficial lesions of the pars intercerebralis in and around the area of the MNSC (median groups of cerebral neurosecretory cells) have been studied 18 hr after surgery. Only lesions involving areas immediately lateral to the MNSC produce an impairment of flight performance. The release of adipokinetic hormone during flight was studied in these locusts by measuring the changes in haemolymph lipid during flight. It has not been possible to identify any of the areas tested as being concerned with the control of the release of adipokinetic hormone since lipid mobilization was not prevented by any of the operations studied.The poor flight performance in locusts in which the MNSC were destroyed by cautery on day 1 of adult life can be prevented by regular topical application of a synthetic juvenile hormone analogue. It is argued that the effects of removal of the MNSC on the development of flight performance are most likely a consequence of reduced activity of the corpora allata.  相似文献   

8.
In Locusta migratoria, activation of phenoloxidase in the haemolymph in response to injection of laminarin is age-dependent: being absent in fifth instar nymphs and newly emerged adults, and only becoming evident four days after the final moult. This pattern of change in phenoloxidase activation correlates with the pattern of change in the concentration of apolipophorin-III (apoLp-III) in the haemolymph. Injection of a conspecific adipokinetic hormone (Lom-AKH-I) has no effect on the phenoloxidase response in nymphs or newly emerged adults but, in adults older than four days, co-injection of the hormone with laminarin prolongs the activation of phenoloxidase in the haemolymph: a similar enhancement of the response to laminarin is observed in locusts that have been starved for 48 h but not injected with AKH-I. During most of the fifth stadium, injection of laminarin results in a decrease in the level of prophenoloxidase in the haemolymph; an effect that is not observed in adults of any age. Marked changes in the concentration of apoLp-III, and the formation of LDLp in the haemolymph, are observed after injection of laminarin (or LPS) and these are remarkably similar, at least qualitatively, to those that occur after injection of AKH-I. The involvement of lipophorins in the activation of locust prophenoloxidase in response to immunogens is discussed.  相似文献   

9.
Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase-dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.  相似文献   

10.
Fractionation of methanolic extracts of haemolymph on Sephadex LH-20 made possible the measurement of the titre of adipokinetic hormone in the haemolymph of locusts. Experimentally produced high concentrations of haemolymph carbohydrate caused a delay in the mobilization of lipid during flight, and very low titres of the hormone were present in the haemolymph of locusts injected with trehalose immediately before a 25 min flight. In these locusts flight speed was higher than saline-injected controls. Although delayed lipid mobilization during flight was also seen in locusts injected with sucrose, sucrose is not utilized for flight metabolism and flight speed was not increased by the injection. Tentative estimates of the release rate (c. 1000pg/20min flight) and half life (c. 20 min) of adipokinetic hormone during flight are made. The results described suggest that during flight the rate at which trehalose disappears from the haemolymph does not play a major role in the initiation of the release of adipokinetic hormone.  相似文献   

11.
Abstract. Flight fuel relations of crowded and isolated Locusta migratoria migratorioides were investigated in younger (12–16 days after fledging) and older (27–30 or 27–32 days after fledging) adult males.No phase polymorphism dependent differences were found in resting haemolymph carbohydrate levels of the younger locusts.In the older age group, resting haemolymph carbohydrate levels were slightly though significantly higher in the isolated than in the crowded locusts.Injection of various doses of synthetic adipokinetic hormones (AKHs) did not induce marked changes in haemolymph carbohydrate levels and no differences were found between crowded and isolated locusts.A 30 min flight led to the same decrease in haemolymph carbohydrate levels of isolated and crowded locusts, 43.3% and 44.6% of the resting levels, respectively.We concluded, therefore, that the results do not seem to indicate that isolated locusts rely more heavily on carbohydrates as flight fuel than crowded locusts.Hyperlipaemic responses to flight were less intense in isolated than in crowded locusts, but phase polymorphism dependent differences in flight-induced increase of haemolymph lipid levels were not parallel in 12–16-day-old and 27–32-day-old males.In the younger age group the difference was mainly in the duration of flight needed to induce full response which appeared already after 20 min of flight in the crowded locusts, but only after 45 or 60 min of flight in the isolated ones.In contrast, the older isolated locusts showed markedly lower haemolymph lipid elevations than the crowded locusts even after 30, 45 or 60 min of flight.The hypothesis is forwarded that isolated locusts have a rather coarse adipokinetic strategy focused on a single long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative migratory flights and saving fuel reserves for unpredictable long-distance migrations.  相似文献   

12.
Solitary and gregarious locusts differ in many traits, such as body color, morphometrics and behavior. With respect to behavior, solitary animals shun each other, while gregarious animals seek each other's company, hence their crowding behavior. General activity, depending on the temperature, occurs throughout the day but is much lower in solitary locusts. Solitary locusts occasionally fly by night while gregarious locusts fly regularly during daytime (swarming). In search of new assays to identify substances that control or modify aspects of (phase) behavior, we designed a simple activity assay, meant to complement existing behavioral measurement tools. The general activity is reflected in the number of wall hits, that is, the number of contacts between the locust and the vertical walls of a small arena. Using this single parameter we were able to quantify differences in total activity of both nymphs and adults of isolation-reared (solitary), regrouped- and crowdreared (gregarious) locusts under different conditions. Furthermore, we demonstrate that there are inter- and intra-phase dependent differences in activities of 5th instar nymphs afar injections of the three different adipokinetic hormones.  相似文献   

13.
《Insect Biochemistry》1987,17(6):799-808
The response of fifth larval instar locusts to injected adipokinetic hormone (AKH) is only poor, as is reflected in both a very moderate elevation of the haemolymph lipid concentration and the slight occurrence of the haemolymph lipophorin interconversions characteristic for adult locusts, resulting in formation of only small quantities of the low density lipophorin (A+). However, an additional lipophorin fraction (A′) is induced, which is intermediate in density and size between high and low density lipophorin and which is not identified in adult haemolymph. As in adults, larval A+ formation includes association of the resting high density lipophorin with a non-lipid containing protein (C2), the haemolymph concentration of which is only one-fifth relative to adults. However, the larval haemolymph protein composition is not the primary cause of the incomplete adipokinetic response, as elevation of the concentration of protein C2 by injection of isolated adult C2, whether or not in combination with adult high density lipophorin, did not increase lipophorin conversions nor haemolymph lipid elevation.In vitro incubation of larval fat bodies in adult haemolymph showed that competency to both the AKH-induced lipid release and the haemolymph lipophorin conversions of the larval fat body are reduced compared to equal amounts of adult tissue. Reciprocal incubation of adult fat body in larval haemolymph resulted in only a very moderate adipokinetic response, demonstrating that larval haemolymph protein composition is restrictive for full development of hormone action.Both immunoblotting experiments and enzyme-linked immunosorbent assays (ELISA), using monoclonal antibodies specific for the adult lipophorin apoproteins, indicated that the larval lipophorins closely resemble the adult forms. Apparently the structure of locust lipophorins is remarkably constant throughout development despite changes in metabolic functions.  相似文献   

14.
Two analogs of the red pigment-concentrating hormone (RPCH) have been synthesized by the solid-phase method: [Thr6]-RPCH (I) and [Tyr4, Thr6]-RCPH (II). Analog I has the same amino acid composition as the second adipokinetic hormone (AKH-II) isolated from locust corpora cardiaca. Bioassay for lipid-mobilizing activity in adult male locusts gave the following increases in hemolymph lipid content: AKH-I, 3.5; I, 2.4; II, 2.9. The biological response shown by I lends support to the conclusion that its sequence is that of the presumptive AKH-II. Replacement of Phe in position 4 by Tyr does not reduce the adipokinetic response.  相似文献   

15.
Sectioning of the afferent nerves (NCCI and II) to the locust corpora cardiaca, glandular lobe removal, cardiacectomy, or removal of the median neurosecretory cells of the brain, have no long-term effect on blood lipid concentration. After removal of the glandular lobe, haemolymph carbohydrate concentration is lowered and remains significantly so from the second to the sixth day after the operation but returns to normal within 10 to 15 days. Severance of the afferent nerves to the corpora cardiaca does not, however, affect blood carbohydrate concentration. The injection of a concentrated extract of glandular lobes into locusts deprived of their glandular lobes does not elicit a hyperglycaemic effect even when blood carbohydrate levels are low. Cauterization of the median neurosecretory cells of the brain, sectioning of the NCCI and II, or removal of the glandular lobes of the corpora cardiaca have no effect on haemolymph protein.After dilution of haemolymph constituents by the injection of water, carbohydrate and protein concentrations are not rapidly restored to their initial values. The lipid concentration, however, rapidly returns to its pre-injection level due to the mobilization of 16:16, 16:18, and 18:18 diglycerides. This occurs even in glandular lobe deprived, median neurosecretory cell cauterized, or headless locusts. These diglycerides are mobilized following the injection of solutions containing lipid, carbohydrate, and/or protein, and are the same diglycerides that are released from the fat body in response to adipokinetic hormone. It is concluded that the injection of large volumes of fluid causes lipid mobilization but adipokinetic hormone does not apear to be involved, and the mechanism of blood lipid homeostasis in the resting locust is not clear.  相似文献   

16.
The dark-colour-inducing effect of several peptides in comparison to that of the dark-colour-inducing neurohormone (DCIN, [His(7)]-corazonin) of locusts was investigated by a bioassay based on nymphs of a DCIN-deficient albino mutant of Locusta migratoria. The study was aimed at elucidating the active part of the DCIN and to explore the contribution of its amino acids to the activity. Graded doses of all peptides were injected in oil. [Arg(7)]-corazonin and DCIN were equally effective. Certain arthropod neuropeptides having the -SXGW- partial sequence (a part of the DCIN and of [Arg(7)]-corazonin; X=His and X=Arg, respectively) yielded the following findings: Scg-AKH-II (adipokinetic hormone II of Schistocerca gregaria X=Thr), Grb-AKH ( adipokinetic hormone of Gryllus bimaculatus X=Thr) and RPCH (red pigment concentrating hormone of crustaceans X=Pro) evoked a moderate darkening response, but Lom-AKH-II (adipokinetic hormone II of L. migratoria X=Ala) was ineffective. Step by step shortening of the sequence of the DCIN at the N-terminal, from pGlu-3-11DCIN to pGlu-9-11DCIN, resulted in a decreasing activity, but even pGlu-9-11DCIN induced a weak response with high doses. Shortening of the DCIN from the C-terminal revealed a moderate activity of 1-7DCIN-NH(2) and a weak activity of 1-5DCIN-NH(2). An octadecapeptide which induces dark colour in moth larvae, having the pentamer FTPRL-NH(2) at its C-terminal, evoked no darkening in the albino locusts. We conclude that although the -SXGW- partial sequence has some role in induction of darkening, for obtaining maximal effect the whole sequence of the DCIN (or of [Arg(7)]-corazonin) is necessary.  相似文献   

17.
Changes in haemolymph proteins and lipoproteins during adipokinetic hormone action have been studied using polyacrylamide gel electrophoresis (PAGE) and a heparin/EDTA precipitation technique. During hormone action, the formation of A+ takes place at the expense of Ayellow and CL-proteins, which decrease in free concentration in the haemolymph. Ayellow is heparin precipitable, whereas A+ precipitates with EDTA after prior treatment with heparin. After injection of adipokinetic hormone, heparin-precipitable protein (HPP) decreases after a delay of 10–15 min, but heparin/EDTA precipitable protein (HEPP) increases immediately. These changes occur in response to extracts of corpora cardiaca and to synthetic adipokinetic hormone, and are dose-dependent. Both the lipid and the CL-protein content of the HEPP rise as its protein content increases. A+ formation does not occur in fifth-instar nymphs or newly emerged adults, but this response to adipokinetic hormone develops slowly as the adults mature.  相似文献   

18.
Fractionation of methanolic extracts of haemolymph on thin layer chromatography, followed by bioassay, has been used to measure the titres of adipokinetic hormones I and II in the haemolymph of flown locusts. These titres have been correlated with the elevation in haemolymph lipid. Haemolymph lipid elevates in a biphasic manner during locust flight. A rise in lipid occurs during the first 10 min of flight. Lipid levels then plateau between 10 and 20 min. A second, more pronounced elevation begins at 20 min and continues for up to 60 min. The titre of adipokinetic hormone I elevates 10–15 min after flight commences while that of hormone II elevates between 15–30 min. Adipokinetic hormone I contributes 80% of the activity at 30 min but only 45% at 60 min. It is suggested that the elevation in haemolymph lipid during the first 10 min of flight may not be induced by adipokinetic hormone I or II. The role of octopamine in this initial elevation is proposed and discussed.  相似文献   

19.
Fractionation of methanol extracts of perfusate and haemolymph on thin-layer chromatography was used to separate hormones associated with haemolymph lipid regulation in Locusta. Electrical stimulation of the nervi corporis cardiaci II (NCC II) of isolated corpora cardiaca resulted in the release of three hormones into the perfusate; hypolipaemic hormone and two adipokinetic hormones. The two adipokinetic hormones co-migrated with synthetic adipokinetic hormone (adipokinetic hormone I) and with the RF value similar to Carlsen's peptide (adipokinetic hormone II).These two adipokinetic hormones were also present in small amounts in the haemolymph of unflown Locusta, and shown to be released during a 30-min flight. The adipokinetic hormone II fraction from the NCC II-stimulated perfusate and haemolymph also possessed hyperglycaemic activity when assayed in ligated locusts.It is concluded that NCC II controls the release of adipokinetic hormones during flight and that two adipokinetic hormones are released during flight. One of these hormones adipokinetic hormone II also acts as a hyperglycaemic hormone illustrating that a hyperglycaemic hormone is released, during flight.  相似文献   

20.
Summary Flight performance in locusts is a function of age, with its peak value at 18 days after emergence. While allatectomy retards the normal development of flight capability, it also has the effect of slowing down the decline in flight performance characteristic of operated control locusts as they age. Periodic topical application of synthetic juvenile hormone remedies the initial effect of allatectomy but its effectiveness wears off with age. The period of optimum flight performance is prolonged in locusts allatectomised when mature.A characteristic features of the flight pattern of immature-allatectomised and matureallatectomised locusts when flown about one week after the operation is a rapid decline in flight speed during the first 20 minutes of flight. Eventually, as the allatectomised locusts age, they assume the flight pattern of normal locusts and subsequent differences in flight performance between operated and normal locusts are confined to differences in flight intensity.Allatectomy has no marked effect on the preflight haemolymph total lipid and carbohydrate levels, the mobilisation of lipid and the amount of carbohydrate depleted. The quantity of lipid mobilised is, however, related to flight performance in both allatectomised and operated control locusts. Locusts which fly faster mobilise more lipid. The lipids mobilised by the adipokinetic hormone are 1618; 1818 and 1616 diglycerides in order of abundance. Allatectomy has no effect on the nature of these diglycerides released during flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号