首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The effect of temperature on formation of aflatoxin on solid substrate (rice) byAspergillus flavus NRRL 2999 has been studied in some detail. The optimum temperature for production of both aflatoxin B1 and G1 under the conditions employed is 28° C. Comparable yields of B1 were obtained at 32° C, but considerably less G1 was produced at this temperature. Both B1 and G1 were found in lesser amounts at temperatures above 32° C, and the aflatoxin content of rice incubated at 37° C was low (300–700 ppb) even though growth was good.Reducing the temperature from 28° to 15° C resulted in progressively less aflatoxin, but 100 ppb of B1 was detected in cultures incubated 3 weeks at 11° C. No aflatoxin was produced at 8° C.The ratio of the four aflatoxins is affected by temperature. At the lower temperatures, essentially equal amounts of aflatoxin B1 and G1 were produced, whereas at 28° C, approximately four times as much B1 was detected as G1. At the higher temperatures, relatively less G was formed, until at 37° C, less than 10 ppb was detected.This is a laboratory of the Northern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture.  相似文献   

3.
Summary Woodsmoke delayed aflatoxius B1 and G1 release and significantly exerted inhibitory effects on the toxins production by a toxigenic Asperigillus flavus. The fungistatic efficiency of the woodsmoke increased with reduced moisture content in fish.  相似文献   

4.
5.
6.
The influence of six fungitoxicants on growth and aflatoxin production by Aspergillus flavus was tested in liquid SMKY medium at two concentrations, viz . 0.1 and 0.5%. Thiram completely inhibited the aflatoxin production at 0.5% concentration. Other fungitoxicants showing more than 60% inhibition were bavistin and daconil. Vitavax (0.1%) and agrosan GN (0.1 and 0.5%) stimulated the growth of fungus and aflatoxin elaboration after 7 d of incubation. Dithane M-45 moderately inhibited aflatoxin synthesis. Treatment with fungitoxicants also alters the ratio of B1 and G1.  相似文献   

7.
8.
Aflatoxin degradative activity was demonstrated in 6- to 12-d-old intact mycelium and cell-free extracts of Aspergillus flavus. The addition of cycloheximide, SKF 525-A or metyrapone to cultures of A. flavus prevented subsequent degradation of the aflatoxins, while in cell-free extracts degradation was inhibited by SKF 525-A, metyrapone and cytochrome c but not by KCN. In cell-free extracts, aflatoxin degradation was enhanced by NADPH and NaIO4. The results suggest the involvement of cytochrome P-450 monooxygenases in the aflatoxin degradative activity of A. flavus.  相似文献   

9.
10.
Four amino acids were used as sole nitrogen sources or as supplements to ammonium sulfate, and casein and ammonium sulfate were used as sole nitrogen sources to examine their effects on aflatoxin production by Aspergillus parasiticus NRRL 2999 and Aspergillus flavus 3357 grown on synthetic liquid media. In general, when proline, asparagine, casein, and ammonium sulfate were used as sole nitrogen sources, they supported more growth and toxin production than tryptophan or methionine. However, proline stimulated more toxin production per gram of mycelium in stationary cultures than the other nitrogen sources, including the amino acid asparagine, which is generally recognized as supporting good aflatoxin production. The exact responses to individual nitrogen sources were influenced by the species of fungus and whether cultures were stationary or shaken. In shake cultures, but not in stationary cultures, increased growth was generally associated with increased toxin production.  相似文献   

11.
The effect of eucalyptus oil on growth and aflatoxin production by Aspergillus flavus was tested at three levels, viz . 0·05, 0·1 and 0·2 ml/50 ml SMKY medium. After 6 days of incubation on 0·05 and 0·1 ml supplemented SMKY medium, growth and toxin production were inhibited while at 0·2 ml concentration there was no growth. However, after 12 days of incubation toxin production was greater than the controls.  相似文献   

12.
The inoculation of Aspergillus flavus spores into a culture of Streptococcus lactis in Lablemco tryptone broth medium resulted in little or no aflatoxin accumulation even though the growth of the fungus was not hindered. The drop in pH and reduced nutrient levels in the medium as a result of the S. lactis growth were not the cause of the observed inhibition. The inhibition was not eliminated by the addition of carbohydrate equal to the amount used by the bacterium before the inoculation with the fungus. Aflatoxin levels were also markedly reduced when S. lactis was inoculated into a growing A. flavus culture. In addition to inhibiting the synthesis of aflatoxin, S. lactis also degraded preformed toxin. A. flavus, on the other hand, not only reduced the growth of S. lactis but also affected the morphology of the bacterial cell; the cells became elongated and formed long chains. S. lactis produced and excreted the inhibitor into the medium late in its growth phase. The inhibitor was a heat-stable low-molecular-weight compound. Chloroform extracts of A. flavus grown in the presence of S. lactis were toxic to Bacillus megaterium but did not exhibit mutagenic or carcinogenic activity in the Salmonella/mammalian microsome mutagenicity test.  相似文献   

13.
14.
The influence of pyridazinone herbicides on aflatoxin production by Aspergillus flavus and A. parasiticus was studied in liquid media. Mycelia production was not affected by 20, 40, or 60 micrograms of herbicide per ml; however, aflatoxin production by A. parasiticus was higher in media with herbicide, whereas A. flavus produced lower aflatoxin levels.  相似文献   

15.
Four amino acids were used as sole nitrogen sources or as supplements to ammonium sulfate, and casein and ammonium sulfate were used as sole nitrogen sources to examine their effects on aflatoxin production by Aspergillus parasiticus NRRL 2999 and Aspergillus flavus 3357 grown on synthetic liquid media. In general, when proline, asparagine, casein, and ammonium sulfate were used as sole nitrogen sources, they supported more growth and toxin production than tryptophan or methionine. However, proline stimulated more toxin production per gram of mycelium in stationary cultures than the other nitrogen sources, including the amino acid asparagine, which is generally recognized as supporting good aflatoxin production. The exact responses to individual nitrogen sources were influenced by the species of fungus and whether cultures were stationary or shaken. In shake cultures, but not in stationary cultures, increased growth was generally associated with increased toxin production.  相似文献   

16.
K L Applegate  J R Chipley 《Mycologia》1973,65(6):1266-1273
  相似文献   

17.
The effect of phytate on the production of aflatoxins by Aspergillus parasiticus and Aspergillus flavus grown on synthetic media was examined. In the absence of pH control (initial pH 4.5–6.5) for A. parasiticus, phytate (14.3 mM) caused a six-fold decrease in aflatoxins in the medium and a ten-fold decrease in those retained by the mycelia. When the initial pH of the medium was adjusted to 4.5 no effect on aflatoxin production was observed. With A. flavus or A. parasiticus grown on media with a higher initial pH value (6 to 7), the presence of phytate in the media caused an increase in aflatoxin production. These results are inconsistent with previous studies which indicated that phytate depresses aflatoxin production by rendering zinc, a necessary co-factor for aflatoxin biosynthesis, unavailable to the mold.  相似文献   

18.
Summary A nontoxigenic isolate of Aspergillus flavus (NRRL 5565) contains a viral genome consisting of 3 double-stranded RNA (ds-RNA) components with molecular weights of approximately 3 kb each. It thus shares a characteristical feature with a virus occuring in strains of Penicillium chrysogenum.Application of known inhibitors of doublestranded RNA virus synthesis results in stable aflatoxin formation by this originally nontoxigenic strain and the simultaneous loss of its ds-RNA traits. Since the inhibitor induced toxicity can be completely reverted by incubation with a virus from Penicillium chrysogenum (PcV), it is presumed that PcV or a functional related virus possibly constitutes the aflatoxin repressing determinant in Aspergillus flavus.  相似文献   

19.
The effect of aqueous leaf extracts of four plants, Argemone mexicana, Cyperus rotundus, Euphorbia hirta and Solanum nigrum , on growth and aflatoxin production by Aspergillus flavus was studied in SMKY liquid medium. All the plants inhibited aflatoxin production. No correlation between the growth of the fungus and aflatoxin synthesis was observed. The influence of these plants on the ratio of aflatoxin B1 to G1 is discussed.  相似文献   

20.
AIMS: To establish a relationship between lipase gene expression and aflatoxin production by cloning the lipA gene and studying its expression pattern in several aflatoxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. METHODS AND RESULTS: We have cloned a gene, lipA, that encodes a lipase involved in the breakdown of lipids from aflatoxin-producing A. flavus, A. parasiticus and two nonaflatoxigenic A. flavus isolates, wool-1 and wool-2. The lipA gene was transcribed under diverse media conditions, however, no mature mRNA was detected unless the growth medium was supplemented with 0.5% soya bean or peanut oil or the fungus was grown in lipid-rich medium such as coconut medium. The expression of the lipase gene (mature mRNA) under substrate-induced conditions correlated well with aflatoxin production in aflatoxigenic species A. flavus (SRRC 1007) and A. parasiticus (SRRC 143). CONCLUSIONS: Substrate-induced lipase gene expression might be indirectly related to aflatoxin formation by providing the basic building block 'acetate' for aflatoxin synthesis. No direct relationship between lipid metabolism and aflatoxin production can be ascertained, however, lipase gene expression correlates well with aflatoxin formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Lipid substrate induces and promotes aflatoxin formation. It gives insight into genetic and biochemical aspects of aflatoxin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号