共查询到20条相似文献,搜索用时 0 毫秒
1.
Paulo Silva de Almeida Andrey José de Andrade Alan Sciamarelli Josué Raizer Jaqueline Aparecida Menegatti Sandra Cristina Negreli Moreira Hermes Maria do Socorro Laurentino de Carvalho Rodrigo Gurgel-Gon?alves 《Memórias do Instituto Oswaldo Cruz》2015,110(4):551-559
This study updates the geographic distributions of phlebotomine species in
Central-West Brazil and analyses the climatic factors associated with their
occurrence. The data were obtained from the entomology services of the state
departments of health in Central-West Brazil, scientific collections and a literature
review of articles from 1962-2014. Ecological niche models were produced for sandfly
species with more than 20 occurrences using the Maxent algorithm and eight climate
variables. In all, 2,803 phlebotomine records for 127 species were analysed.
Nyssomyia whitmani, Evandromyia lenti and Lutzomyia
longipalpis were the species with the greatest number of records and were
present in all the biomes in Central-West Brazil. The models, which were produced for
34 species, indicated that the Cerrado areas in the central and
western regions of Central-West Brazil were climatically more suitable to sandflies.
The variables with the greatest influence on the models were the temperature in the
coldest months and the temperature seasonality. The results show that phlebotomine
species in Central-West Brazil have different geographical distribution patterns and
that climate conditions in essentially the entire region favour the occurrence of at
least one Leishmania vector species, highlighting the need to
maintain or intensify vector control and surveillance strategies. 相似文献
2.
Morgan Jade Raath Peter Christiaan le Roux Ruan Veldtman Michelle Greve 《Austral ecology》2018,43(3):316-327
Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, while biotic interactions have only seldom been incorporated into models. This study tested the ability of incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host‐dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to four species distribution models that additionally incorporated biotic interactions in the form of four different representations of host plant distributions as predictors. We found that incorporating the moth–host plant interactions improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica model performance only improved for one representation of host plant distribution. The best performing representation of host plant distribution differed for the two Gonometa species. While these results suggest that incorporating biotic interactions into species distribution models can improve model performance, there is inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of biotic interactions to improve species distribution models may be context‐specific, even for species which have obligatory interactions with other organisms. 相似文献
3.
4.
James R. P. Worth Peter A. Harrison Grant J. Williamson Gregory J. Jordan 《Austral ecology》2015,40(2):126-138
The warmer and drier climates projected for the mid‐ to late‐21st century may have particularly adverse impacts on the cool temperate rainforests of southeastern Australia. Southern beech (Nothofagus cunninghamii; Nothofagaceae), a dominant tree species in these forests, may be vulnerable to minor changes in its climate envelope, especially at the edge of the species range, with Holocene fossil evidence showing local extinction of populations in response to small climate changes. We modelled the stability of this species climate envelope using the maximum entropy algorithm implemented in Maxent and two thresholds of presence/absence by projecting the modern climate envelope onto four Global Circulation Models forecasted for two time periods (2050s and 2070s). The climate envelope, as estimated from the species present climatic range, is predicted to shrink by up to 49% by the 2050s and up to 64% by the 2070s. The greatest predicted reduction is in Victoria with 91–100% of its current range being climatically unsuitable by the 2070s. Climatically similar areas to the species present range are predicted to remain in mountainous areas of western Tasmania, the Northeast Highlands of Tasmania, and the Baw Baw Plateau in the Central Highlands of Victoria. However, region‐specific modelling approaches made very different predictions from the whole‐range based models, especially in the severity of the predicted decline for Victorian populations of N. cunninghamii which occur in much warmer climates than the rest of the species geographical range. This shows that, for widespread species that span a range of climate zones, the exposure of current populations to climate change may be better modelled using a regional based approach. How the species responds to climate change will depend on the species ability to respond to drier and warmer climates and the concomitant increase in fire intensity. 相似文献
5.
Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c . 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica , thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany. 相似文献
6.
C. T. Astley Maberly 《Ostrich》2013,84(2):101-104
Hustler, K. &; Howells, W. W. 1986. A population study of Tawny Eagles in the Hwange National Park, Zimbabwe. Ostrich 57: 101–106. Tawny Eagle Aquila rapax breeding success has been monitored in the Hwange National Park, Zimbabwe from 1973–1984. There were 1044 breeding pair years with 640 chicks reared; an average of 0,61 chicks/breeding paid year. The average number of pairs breeding each year was 72,4%. Thirty-one percent of all breeding attempts failed; most during nest-building (59%). Rainfall in the latter part of the rainy season appeared to influence early and late laying pairs. Two-egg clutches were most common (76%) and 65% of all one-egg clutches laid failed to produce chicks. Several factors which may influence breeding success are discussed. 相似文献
7.
Aim The use of ecological niche models (ENMs) to predict potential distributions of species is steadily increasing. A necessary assumption is that climatic niches are conservative, but recent findings of niche shifts during biological invasion indicate that this assumption is not always valid. Selection of predictor variables may be one reason for the observed shifts. In this paper we assess differences in climatic niches in the native and invaded ranges of the Mediterranean house gecko (Hemidactylus turcicus) in terms of commonly applied climate variables in ENMs. We analyse which variables are more conserved versus relaxed (i.e. subject to niche shift). Furthermore, we study the predictive power of different sets of climate variables. Location The Mediterranean region and North America. Methods We developed models using Maxent and various subsets of variables out of 19 bioclimatic layers including: (1) two subsets comprising almost all variables excluding only highly collinear ones; (2) two subsets with minimalistic variable sets of water availability and energy measures; (3) two subsets focused on temperature‐related parameters; (4) two subsets with precipitation‐related parameters; and (5) one subset comprising variables combining temperature and precipitation characteristics. Occurrence data from the native Mediterranean range were used to predict the potential introduced range in North America and vice versa. Degrees of niche similarity and conservatism were assessed using both Schoener's index and Hellinger distances. The significance of the results was tested using null models. Results The degree of niche similarity and conservatism varied greatly among the predictors and variable sets applied. Shifts observed in some variables could be attributed to active habitat selection while others apparently reflected background effects. Main conclusions The study was based on comprehensive occurrence data from all regions where Hemidactylus turcicus is present in Europe and North America, providing a robust foundation. Our results clearly indicate that the degree of conservatism of niches in H. turcicus largely varies among predictors and variable sets applied. Therefore, the extent of niche conservatism of variables applied should always be tested in ENMs. This has an important impact on studies of biological invasion, impacts of climate change and niche evolution. 相似文献
8.
9.
Summary A new locality for Saxifraga rivularis is described from Beinn Eighe, Wester Ross. Species lists from the site and from two nearby sites are compared in relation to soil analyses. 相似文献
10.
Michael W. Belitz Michael J. Monfils David L. Cuthrell Anna K. Monfils 《Insect Conservation and Diversity》2020,13(2):187-200
1. The Poweshiek skipperling [Oarisma poweshiek (Parker, 1870; Lepidoptera: Hesperiidae)] is a federally endangered butterfly that was historically common in prairies of the upper Midwestern United States and Southern Manitoba, Canada. Rapid declines over the last 20 years have reduced the population numbers to four verified extant sites. The causes of Poweshiek skipperling decline are unknown. 2. We aggregated all known Poweshiek skipperling occurrence records to examine the spatiotemporal patterns of Poweshiek skipperling decline. Ecological niche models were developed for five time frames (1985, 1990, 1995, 2000 and 2005) and three spatial extents (eastern occupied range, western occupied range and total occupied range). We used a backward elimination method to investigate the effects of climate and land use on the ecological niche of Poweshiek skipperling. 3. Predictors of occurrence changed over time and across the geographical extent of Poweshiek skipperling. Land use covariates were retained in east models. In the west and total extent, climate variables contributed the most to model predictive power for the 1985, 1990 and 1995 models; land use variables contributed the most to model predictive power in the 2000 and 2005 models. 4. During the rapid decline in Poweshiek skipperling population numbers occurring at the turn of the century, probability of Poweshiek skipperling presence was being driven by proportion of natural land cover and distance to nearest grassland/wetland. Our results suggest that these land use variables are important landscape‐level variables to consider when developing risk assessments of extant populations and potential reintroduction sites. 相似文献
11.
Stockman et al. (2006 ) found that ecological niche models built using DesktopGARP ‘failed miserably’ to predict trapdoor spider (genus Promyrmekiaphila) distributions in California. This apparent failure of GARP (Genetic Algorithm for Rule‐Set Production) was actually a failure of the authors’ methods, that is, attempting to build ecological niche models using single data points. In this paper, we present a re‐analysis of their original data using standard methods with the data appropriately partitioned into training/testing subsets. This re‐evaluation generated accurate distributional predictions that we contrast with theirs. We address the consequences of model‐building using single data points and the need for a foundational understanding of the principles of ecological niche modelling. 相似文献
12.
ZW Culumber DB Shepard SW Coleman GG Rosenthal M Tobler 《Journal of evolutionary biology》2012,25(9):1800-1814
Local adaptation is often invoked to explain hybrid zone structure, but empirical evidence of this is generally rare. Hybrid zones between two poeciliid fishes, Xiphophorus birchmanni and X. malinche, occur in multiple tributaries with independent replication of upstream‐to‐downstream gradients in morphology and allele frequencies. Ecological niche modelling revealed that temperature is a central predictive factor in the spatial distribution of pure parental species and their hybrids and explains spatial and temporal variation in the frequency of neutral genetic markers in hybrid populations. Among populations of parentals and hybrids, both thermal tolerance and heat‐shock protein expression vary strongly, indicating that spatial and temporal structure is likely driven by adaptation to local thermal environments. Therefore, hybrid zone structure is strongly influenced by interspecific differences in physiological mechanisms for coping with the thermal environment. 相似文献
13.
Matthew H. Van Dam Andrew J. Rominger Michael S. Brewer 《Journal of Biogeography》2019,46(10):2275-2288
14.
Guilherme Caeiro‐Dias Carla Luís Catarina Pinho Pierre‐André Crochet Antigoni Kaliontzopoulou 《Journal of Zoological Systematics and Evolutionary Research》2018,56(4):479-492
Niche divergence among closely related lineages can be informative on the ecological and evolutionary processes involved in differentiation, particularly in the case of cryptic species complexes. Here we compared phylogenetic relationships and niche similarity between pairs of lineages included in the Podarcis hispanicus complex to examine patterns of niche divergence and its role in the organization of current diversity patterns, as allopatric, parapatric, and sympatric lineages occur in the Western Mediterranean Basin. First, we used ecological niche models to characterize the realized climatic niche of each Podarcis hispanicus complex lineage based on topographic and climatic variables, to identify important variables, and to test for niche conservatism or divergence between pairs of lineages. Variables related to precipitation generally exhibited the highest contribution to niche models, highlighting the importance of rainfall levels in shaping distributions of Podarcis wall lizards. We found that most forms have significant differences in realized climatic niches that do not follow the pattern of mitochondrial divergence. These results lend support to the hypothesis that genetic divergence across Podarcis hispanicus complex most likely occurred in allopatric conditions, mostly with significant niche divergence. Competition after secondary contact is also suggested by the common occurrence of niche overlap between lineages that exhibit strictly parapatric distribution. The almost continuous distribution of Podarcis lizards in the study area appears to be a result of a combination of complementary suitable niches and competition, which seem two important mechanisms limiting geographic distributions and restricting the existence of extensive contact zones. 相似文献
15.
Orogenesis of topographically diverse montane regions often drives complex evolutionary histories of species. The extensive biodiversity of the eastern edge of the Tibetan Plateau, which gradually decreases eastwardly, facilitates a comparison of historical patterns. We use coalescence methods to compare species of stream salamanders (Batrachuperus) that occur at high and low elevations. Coalescent simulations reveal that closely related species are likely to have been influenced by different drivers of diversification. Species living in the western high‐elevation region with its northsouth extending mountains appear to have experienced colonization via dispersal followed by isolation and divergence. In contrast, species on the eastern low‐elevation region, which has many discontinuous mountain ranges, appear to have experienced fragmentation, sometimes staged, of wide‐ranging ancestral populations. The two groups of species appear to have been affected differently by glaciation. High‐elevation species, which are more resistant to cooler temperatures, appear to have experienced population declines as recently as the last glaciation (0.016–0.032 Ma). In contrast, salamanders dwelling in the warmer and wetter habitats at low‐elevation environs appear to have been affected less by the relatively recent, milder glaciation, and more so by harsher, extensive glaciations (0.5–0.175 Ma). Thus, elevation, topography and cold tolerance appear to drive evolutionary patterns of diversification and demography even among closely related taxa. The comparison of multiple species in genealogical analyses can lead to an understanding of the evolutionary drivers. 相似文献
16.
Aim Various techniques model a species’ niche and potential distribution by comparing the environmental conditions of occurrence localities with those of the overall study region (via a background or pseudoabsence sample). Here, we examine how changes in the extent of the study region (ignored or under‐appreciated in most studies) affect models of two rodents, Nephelomys caracolus and Nephelomys meridensis. Location North‐central South America. Methods We used Maxent to model the species' potential distributions via two methods of defining the study region. In Method 1 (typical of most studies to date), we calibrated the model in a large study region that included the ranges of both species. In Method 2, we calibrated the model using a smaller study region surrounding the localities of the focal species, and then applied it to the larger region. Because the study region of Method 1 is likely to include areas of suitable conditions that are unoccupied because of dispersal limitations and/or biotic interactions, this approach is prone to overfitting to conditions found near the occupied localities. In contrast, Method 2 should avoid such problems but may require further assumptions (‘clamping’ in Maxent ) to make predictions for areas with environmental conditions beyond those found in the smaller study region. For each method, we calculated several measures of geographic interpredictivity between predictions for the species (cross‐species AUC, cross‐species omission rate, and proportional geographic overlap). Results Compared with Method 1, Method 2 revealed a larger predicted area for each species, less concentrated around known localities (especially for N. caracolus). It also led to higher cross‐species AUC values, lower cross‐species omission rates and higher proportions of geographic overlap. Clamping was minimal and occurred primarily in regions unlikely to be suitable. Main conclusions Method 2 led to more realistic predictions and higher estimates of niche conservatism. Conclusions reached by many studies depend on the selection of an appropriate study region. Although detailed information regarding dispersal limitations and/or biotic interactions will typically be difficult to obtain, consideration of coarse distributional patterns, topography and vegetational zones often should permit delimitation of a much more reasonable study region than the extremely large ones currently in common use. 相似文献
17.
Miguel Calixto-Rojas Andrés Lira-Noriega Miguel Rubio-Godoy Gerardo Pérez-Ponce de León Carlos D. Pinacho-Pinacho 《Journal of fish biology》2021,99(2):396-410
The family Profundulidae is a group of small-sized fish species distributed between southern Mexico and Honduras, where they are frequently the only fish representatives at higher elevations in the basins where they occur. We characterized their ecological niche using different methods and metrics drawn from niche modelling and by re-examining phylogenetic relationships of a recently published molecular phylogeny of this family to gain a better understanding of its biogeographic and evolutionary history. We assessed both lines of evidence from the perspective of niche conservatism to set a foundation for discussing hypotheses about the processes underlying the distribution and evolution of the group. In fish clades where the species composition is not clear, we examined whether niche classification could be informative to discriminate groups geographically and ecologically consistent with any of the different hypotheses of valid species. The characterization of the ecological niche was carried out using the Maxent algorithm under different parameterizations and the projection of the presence on the main components of the most relevant environmental coverage, and the niche comparison was calculated with two indices (D and I), both in environmental space and in that projected geographically. With the molecular data, a species tree was generated using the *BEAST method. The comparison of these data was calculated with an age-overlap correlation test. Based on the molecular phylogeny and on niche overlap analyses, we uncovered strong evidence to support the idea that ecologically similar species are not necessarily sister species. The correlation analysis for genetic distance and niche overlap was not significant (P > 0.05). In clades with taxonomic conflicts, we only identified Profundulus oaxacae as a geographically and ecologically distinct group from P. punctatus. All the evidence considered leads us to propose that Profundulidae do not show evidence of niche conservatism and that there are reasons to consider P. oaxacae as a valid species. Our study suggests that niche divergence is a driving evolutionary force that caused the diversification and speciation processes of the Profundulidae, along with the geological and climatic events that promoted the expansion or contraction of suitable environments. 相似文献
18.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. 相似文献
19.
The conservation of poorly known species is difficult because of incomplete knowledge on their biology and distribution. We studied the contribution of two ecological niche modelling tools, the Genetic Algorithm for Rule-set Prediction (GARP) and maximum entropy (Maxent), in assessing potential ranges and distributional connectivity among 12 of the least known African and Asian viverrids. The level of agreement between GARP and Maxent predictions was low when < 15 occurrences were available, probably indicating a minimum number below that necessary to obtain models with good predictive power. Unexpectedly, our results suggested that Maxent extrapolated more than GARP in the context of small sample sizes. Predictions were overlapped with current land use and location of protected areas to estimate the conservation status of each species. Our analyses yielded range predictions generally contradicting with extents of occurrence established by the IUCN. We evidenced a high level of disturbance within predicted distributions in West and East Africa, Sumatra, and South-East Asia, and identified within West African degraded lowlands four relatively preserved areas that might be of prime importance for the conservation of rainforest taxa. Knowing whether these species of viverrids may survive in degraded or alternative habitats is of crucial importance for further conservation planning. The level of coverage of species suitable ranges by existing and proposed IUCN reserves was low, and we recommend that the total surface of protected areas be substantially increased on both continents. 相似文献
20.
Jérôme Fuchs Juan L. Parra Steven M. Goodman Marie Jeanne Raherilalao Jeremy Vanderwal Rauri C. K. Bowie 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(3):658-676
We conduct a phylogeographic study of the Crested Drongo (Dicrurus forficatus forficatus), a broadly distributed bird species on Madagascar. We first determined the demographic and spatial pattern inferred from mitochondrial and nuclear data, and then compared these results with predictions from a present to 0.120‐Myr‐old reconstruction of the spatial dynamics of the range of D. f. forficatus on Madagascar, enabling putative areas of stability (lineage persistence) to be detected. Weak genetic structure along an east–west pattern and comparatively low genetic diversity were recovered, with strong evidence of population expansion found at all ten loci sampled. The palaeoclimatic distribution models over the past 0.120 Myr suggest the presence of extensive areas of suitable climate in the east and west for the species since its colonization of Madagascar, a result in strong concordance with the spatial and genetic signal derived from our multilocus data set. © 2013 The Linnean Society of London 相似文献