首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of three repetitive sequence families were isolated from recombinant λ-genome libraries, and were used to investigate sequence relationships within these families. Studies presented elsewhere show that members of all three repeat sequence families are transcribed tissue-specifically. The thermal stability of intrafamilial heteroduplexes was measured, and the extent of colinearity between related sequences was determined by restriction mapping, heteroduplex visualization, gel blot hybridization, and direct sequencing. One large and very divergent family, named 2108, was shown to consist of an assemblage of many small repeat sequence subfamilies. Each subfamily includes <40 members which are not contiguous in the genome but are very closely related colinear sequence elements several thousand nucleotides in length. The different 2108 subfamilies share only small sequence subelements, which in each subfamily occur in a different linear order and are surrounded by different sequences. A second divergent family consisting of short repetitive sequences, the 2109 family, includes many small internally homologous subfamilies as well. A third family, 2034, displays little internal sequence divergence and no apparent subfamily structure. The repeat sequence subfamilies may be biologically significant units of repetition. Thus specific 2108 subfamilies were shown to be evolutionary conserved to a remarkable degree. Highly homologous 2108 sequences were found shared among sea urchin species which diverged almost 200 million years ago, although only about 10% of the single copy DNA sequences of these species are now homologous enough to crossreact.  相似文献   

2.
Adrenodoxin (Adx), a [2Fe-2S] vertebrate-type ferredoxin, transfers electrons from the NADPH-dependent flavoprotein Adx reductase (AdR) to mitochondrial cytochrome P450 enzymes of the CYP11A and CYP11B families, which catalyze key reactions in steroid hormone biosynthesis. Adx is a known phosphoprotein, but the kinases that phosphorylate Adx have remained mostly obscure. The aim of this study was to identify previously unknown Adx phosphorylating kinases and to acquire a deeper insight into the functional consequences of such a modification. Here, we show for the first time that bovine Adx is a substrate of protein kinase CK2, whereas bovine CYP11A1, CYP11B1, and AdR are not phosphorylated by this kinase. CK2 phosphorylation of mature Adx requires the presence of both the catalytic alpha-subunit and the regulatory beta-subunit of CK2 and takes place exclusively at residue Thr-71, which is located within the redox partner interaction domain of the protein. We created two Adx mutants, Adx-T71E (imitating a phosphorylation) and Adx-T71V (which cannot be phosphorylated at this site), respectively, and investigated how these mutations affected the interaction of Adx with its redox partners. These data were supplemented with detailed spectroscopic and functional assays using the phosphorylated protein. All Adx species behaved like wild type (Adx-WT) with respect to their redox potential, iron-sulfur cluster symmetry, and overall backbone structure. Substrate conversion assays catalyzed by CYP11A1 showed an increase in product formation when Adx-T71E or CK2-phosphorylated Adx were used as electron carrier instead of Adx-WT, whereas the activity toward CYP11B1 was not altered using these Adx species. Additionally, Adx-T71E represents the only full-length Adx mutant which leads to an increase in CYP11A1 product formation. Therefore, characterizing this full-length mutant helps to improve our knowledge on the functional effects of phosphorylations on complex redox systems.  相似文献   

3.
Calverley MJ 《Steroids》2001,66(3-5):249-255
The syntheses of the new 21,24-methano derivatives of 1alpha,25-dihydroxyvitamin D(3) [viz. 1(S),3(R)-dihydroxy-17(R)-(1',4'-cis-(4'-(1'-hydroxy-1'-methylethyl)-cyclo-hexyl))-9,10-seco-androsta-5(Z),7(E),10(19)-triene (MC 2108) and its (1',4'-trans)-isomer (MC 2110)] are described. The key step is the establishment, by Diels-Alder reaction on a CD-ring side chain diene intermediate prepared from vitamin D(2), of a 1,4-disubstituted cyclohexene moiety in the side chain. Hydrogenation to a 1:1 mixture of cis and trans cyclohexane derivatives and separation of the two series at a stage prior to the standard Horner-Wittig coupling with the (Hoffmann-La Roche) ring-A building block were other important steps in the syntheses of the target analogs. The relative configurations of intermediates were assigned by NMR spectroscopy. MC 2108 and MC 2110 are of interest as conformationally locked side chain derivatives to probe the receptor interactions of not only the parent vitamin D hormone but also its biologically active symmetrical 'double side chain' analog [21-(3'-hydroxy-3'-methylbutyl)-9,10-seco-cholesta-5(Z),7(E),10(19)-triene-1(S),3(R),25-triol (MC 2100)], 'both' side chains of which can formally be traced out in the new analogs. The preferred conformations, inferred from an analysis of (13)C-NMR characteristics, notably the chemical shift of C-17 in a series of analogs, to have the tertiary alcohol (1'-hydroxy-1'-methylethyl) substituent equatorial on the cyclohexane chair, are confirmed by molecular modeling.  相似文献   

4.
We previously reported that the oncoproteins E6 and E7 from cutaneous human papillomavirus type 38 (HPV38) can immortalize primary human keratinocytes in vitro and sensitize transgenic mice to develop skin cancer in vivo. Immunofluorescence staining revealed that human keratinocytes immortalized by HPV38 E6 and E7 display fewer actin stress fibers than do control primary keratinocyte cells, raising the possibility of a role of the viral oncoproteins in the remodeling of the actin cytoskeleton. In this study, we show that HPV38 E7 induces actin stress fiber disruption and that this phenomenon correlates with its ability to downregulate Rho activity. The downregulation of Rho activity by HPV38 E7 is mediated through the activation of the CK2-MEK-extracellular signal-regulated kinase (ERK) pathway. In addition, HPV38 E7 is able to induce actin fiber disruption by binding directly to eukaryotic elongation factor 1A (eEF1A) and abolishing its effects on actin fiber formation. Finally, we found that the downregulation of Rho activity by HPV38 E7 through the CK2-MEK-ERK pathway facilitates cell growth proliferation. Taken together, our data support the conclusion that HPV38 E7 promotes keratinocyte proliferation in part by negatively regulating actin cytoskeleton fiber formation through the CK2-MEK-ERK-Rho pathway and by binding to eEF1A and inhibiting its effects on actin cytoskeleton remodeling.  相似文献   

5.
6.
Apolipoprotein-E (apoE) plays an important role in neuronal lipid transport and is thought to stabilize microtubules by preventing tau hyperphosphorylation. ApoE is also associated with insoluble amyloid detected in Alzheimer disease brain lesions. The apoE C-terminal shares several physicochemical features with alpha-synuclein, another neuronal apolipoprotein-like protein. Alpha-synuclein is phosphorylated by protein kinase CK2 (CK2) at an atypical PSD/E motif in vivo and in vitro. We identified a similar PSD/E motif in apoE and therefore investigated its potential phosphorylation by CK2 in vitro. When a [(32)P]-labeling approach was used, CK2 readily phosphorylated purified human apoE as well as recombinant forms of human apoE3 and apoE4. Using liquid chromatography mass spectrometry techniques, we mapped the major apoE CK2 phosphorylation site to Ser296 within the apoE PSD/E motif. We also found that apoE potently activated CK2 as demonstrated by increased CK2beta subunit autophosphorylation and by increased phosphorylation of tau when the latter was added to the kinase reaction mixtures. Other proteins such as apolipoprotein A-I and albumin did not effectively activate CK2. The phosphorylation of apoE by CK2 as well as the activation of CK2 by apoE may be relevant in vivo where apoE, CK2, and tau are co-localized with additional CK2 targets on neuronal microtubules.  相似文献   

7.
Hyacinthella lazulina is described as new to science. The new species is closest to H. heldreichii , but has a different chromosome number, 2n = 22, and a vicariant distribution E of its sister species in southern Turkey. Distinguishing features and geographical distribution of the two species are discussed, and a map including all known localities is provided. A new key to the Turkish taxa has been constructed, and new chromosome counts for all but two species are included.  相似文献   

8.
Sensitive to Apoptosis Gene (SAG), a RING component of SCF E3 ubiquitin ligase, was shown to be phosphorylated by protein kinase CK2 at the Thr10 residue. It is, however, unknown whether this phosphorylation is stress-responsive or whether the phosphorylation changes its E3 ubiquitin ligase activity. To address these, we made a specific antibody against the phosphor-SAGThr10. Transient transfection experiment showed that SAG was phosphorylated at Thr10 which can be significantly inhibited by TBB, a relatively specific inhibitor of protein kinase CK2. To determine whether this SAG phosphorylation is stress-responsive, we defined a chemical-hypoxia condition in which SAG and CK2 were both induced. Under this condition, we failed to detect SAG phosphorylation at Thr10, which was readily detected, however, in the presence of MG132, a proteasome inhibitor, suggesting that the phosphorylated SAG has undergone a rapid degradation. To further define this, we made two SAG mutants, SAG-T10A which abolishes the SAG phosphorylation and SAG-T10E, which mimics the constitutive SAG phosphorylation. The half-life study revealed that indeed, SAG-T10E has a much shorter protein half-life (2 h), as compared to wild-type SAG (10 h). Again, rapid degradation of SAG-T10E in cells can be blocked by MG132. Thus, it appears that CK2-induced SAG phosphorylation at Thr10 regulates its stability through a proteasome-dependent pathway. Immunocytochemistry study showed that SAG as well as its phosphorylation mutants, was mainly localized in nucleus and lightly in cytoplasm. Hypoxia condition did not change their sub-cellular localization. Finally, an in vitro ubiqutination assay showed that SAG mutation at Thr10 did not change its E3 ligase activity when complexed with cullin-1. These studies suggested that CK2 might regulate SAG-SCF E3 ligase activity through modulating SAG’s stability, rather than its enzymatic activity directly.  相似文献   

9.
【目的】为了筛选能抑制鼠类柠檬酸杆菌(Citrobacter rodentium)诱发的小鼠结肠炎的益生菌,并研究其干预机制。【方法】对4株筛选的菌株进行人工模拟胃肠液耐受试验,并体外测试它们对鼠类柠檬酸杆菌的抑制能力,最终筛选出粪肠球菌(Enterococcus faecalis)MG 2108。72只雄性7周龄ICR小鼠经过适应性饲养7d后,被随机分为2组:正常对照组(MC组,24只,生理盐水)和炎症对照组(IC组,48只,1×1010CFU/mL灌胃鼠类柠檬酸杆菌),7d后各采12只小鼠,通过结肠组织HE染色和炎症因子检测实验,判断炎症模型建成。原MC组(剩下12只小鼠)更名为NC组,用以区别建模前后的正常对照组,IC组随机分成3组:自然恢复组(IR组,12只,生理盐水)、环丙沙星组(CF组,12只,4mg/mL环丙沙星)和粪肠球菌MG 2108组(EF组,12只,1×108CFU/mL粪肠球菌MG 2108)。18d后结束灌胃,所有小鼠麻醉后眼球取血,解剖。【结果】粪肠球菌MG 2108可以缓解和修复鼠类柠檬酸杆菌引发的小鼠结肠和肝脏损伤,并且通过降低炎症细胞因子的表达水平和增加紧密连接蛋白的表达水平,促进了结肠炎症组织的修复。它改变了肠道微生物菌群结构,EF组的肠杆菌属(Enterorhabdus)和阿克曼菌属(Akkermansia)等有益菌群的丰度增加,同时短链脂肪酸也显著增加(P<0.05),并且优于CF组和IR组。【结论】粪肠球菌MG2108是一株有利于肠道健康的益生菌,治疗鼠类柠檬酸杆菌诱导的小鼠结肠炎效果优于环丙沙星,自然恢复组效果明显差于EF组。  相似文献   

10.
Protein kinase CK2 is a pleiotropic serine/threonine kinase responsible for the generation of a substantial proportion of the human phosphoproteome. CK2 is generally found as a tetramer with two catalytic, α and α′ and two non catalytic β subunits. CK2α C-terminal tail phosphorylation is regulated during the mitotic events and the absence of these phosphosites in α′ suggests an isoform specialization. We used a proteomic approach to identify proteins specifically phosphorylated by a CK2α phosphomimetic mutant, CK2αT344ET360ES362ES370E (CK2α4E), in human neuroblastoma SKNBE cellular extract. One of these proteins is lysine-specific demethylase 1 (LSD1 or KDM1A), an important player of the epigenetic machinery. LSD1 is a FAD-dependent amine oxidase and promotes demethylation of lysine 4 and lysine 9 of mono- and di-methylated histone H3. We found that LSD1 is a new substrate and an interacting partner of protein kinase CK2. Three CK2 phosphosites, (Ser131, Ser137 and Ser166) in the N-terminal region of LSD1 have been identified. This domain is found in all chordates but not in more ancient organisms and it is not essential for LSD1 catalytic event while it could modulate the interaction with CK2 and with other partners in gene repressing and activating complexes. Our data support the view that the phosphorylation of the N-terminal domain by CK2 may represent a mechanism for regulating histone methylation, disclosing a new role for protein kinase CK2 in epigenetics.  相似文献   

11.
Lateral inhibition is critical for cell fate determination and involves the functions of Notch (N) and its effectors, the Enhancer of Split Complex, E(spl)C repressors. Although E(spl) proteins mediate the repressive effects of N in diverse contexts, the role of phosphorylation was unclear. The studies we describe implicate a common role for the highly conserved Ser/Thr protein kinase CK2 during eye and bristle development. Compromising the functions of the catalytic (alpha) subunit of CK2 elicits a rough eye and defects in the interommatidial bristles (IOBs). These phenotypes are exacerbated by mutations in CK2 and suppressed by an increase in the dosage of this protein kinase. The appearance of the rough eye correlates, in time and space, to the specification and refinement of the 'founding' R8 photoreceptor. Consistent with this observation, compromising CK2 elicits supernumerary R8's at the posterior margin of the morphogenetic furrow (MF), a phenotype characteristic of loss of E(spl)C and impaired lateral inhibition. We also show that compromising CK2 elicits ectopic and split bristles. The former reflects the specification of excess bristle SOPs, while the latter suggests roles during asymmetric divisions that drive morphogenesis of this sensory organ. In addition, these phenotypes are exacerbated by mutations in CK2 or E(spl), indicating genetic interactions between these two loci. Given the centrality of E(spl) to the repressive effects of N, our studies suggest conserved roles for this protein kinase during lateral inhibition. Candidates for this regulation are the E(spl) repressors, the terminal effectors of this pathway.  相似文献   

12.
In Drosophila, protein kinase CK2 regulates a diverse array of developmental processes. One of these is cell-fate specification (neurogenesis) wherein CK2 regulates basic-helix-loop-helix (bHLH) repressors encoded by the Enhancer of Split Complex (E(spl)C). Specifically, CK2 phosphorylates and activates repressor functions of E(spl)M8 during eye development. In this study we describe the interaction of CK2 with an E(spl)-related bHLH repressor, Deadpan (Dpn). Unlike E(spl)-repressors which are expressed in cells destined for a non-neural cell fate, Dpn is expressed in the neuronal cells and is thought to control the activity of proneural genes. Dpn also regulates sex-determination by repressing sxl, the primary gene involved in sex differentiation. We demonstrate that Dpn is weakly phosphorylated by monomeric CK2α, whereas it is robustly phosphorylated by the embryo-holoenzyme, suggesting a positive role for CK2β. The weak phosphorylation by CK2α is markedly stimulated by the activator polylysine to levels comparable to those with the holoenzyme. In addition, pull down assays indicate a direct interaction between Dpn and CK2. This is the first demonstration that Dpn is a partner and target of CK2, and raises the possibility that its repressor functions might also be regulated by phosphorylation.  相似文献   

13.
New collections of cestodes from the spiral intestines of the lanternsharks Etmopterus spinax and Etmopterus pusillus off the island of Faial, in the Azores, Atlantic Ocean, have yielded 2 new species of trypanorhynchs belonging to Aporhynchus. Both species share the distinctive lack of all elements of the rhyncheal system that are characteristic of this genus. The identity of Aporhynchus norvegicus is clarified to allow it to be distinguished from A. menezesi n. sp., which also parasitizes E. spinax. This new species differs conspicuously from its congeners in that its mature and gravid proglottids are wider than long, rather than longer than wide, and also in its lack of spinitriches on the scolex. Aporhynchus pickeringae n. sp., the new species from E. pusillus , differs from all of its congeners except A. norvegicus in that it is a relatively delicate worm with relatively fewer testes. It also possesses fewer proglottids and a wider pedunculus scolecis than does A. norvegicus. Sections through the scolex of A. menezesi n. sp. support use of the term bothriate, rather than difossate, in reference to the scolex configuration of some trypanorhynchs. A key to the 4 species of Aporhynchus is provided.  相似文献   

14.
CLIP‐170 is implicated in the formation of kinetochore–microtubule attachments through direct interaction with the dynein/dynactin complex. However, whether this important function of CLIP‐170 is regulated by phosphorylation is unknown. Herein, we have identified polo‐like kinase 1 (Plk1) and casein kinase 2 (CK2) as two kinases of CLIP‐170 and mapped S195 and S1318 as their respective phosphorylation sites. We showed that a CK2 unphosphorylatable mutant lost its ability to bind to dynactin and to localize to kinetochores during prometaphase, indicating that the CK2 phosphorylation of CLIP‐170 is involved in its dynactin‐mediated kinetochore localization. Furthermore, we provide evidence that Plk1 phosphorylation of CLIP‐170 at S195 enhances its association with CK2. Finally, we detected defects in the formation of kinetochore fibres in cells expressing the CLIP‐S195A and ‐S1318A, but not the CLIP‐S195E and ‐S1318D, confirming that Plk1‐ and CK2‐associated phosphorylations of CLIP‐170 are involved in the timely formation of kinetochore–microtubule attachments in mitosis.  相似文献   

15.
【背景】氨甲酰磷酸是生物合成代谢中精氨酸与嘧啶的重要前体物质,在工业微生物生产精氨酸与嘧啶及其衍生物中发挥关键作用。【目的】在大肠杆菌Escherichia coli BW25113中比较氨甲酰磷酸不同合成途径的催化效率。【方法】在大肠杆菌Escherichia coli BW25113中过表达鸟氨酸氨甲酰基转移酶(OTC)的基础上,分别过表达大肠杆菌自身的氨基甲酸激酶(CK)和氨甲酰磷酸合酶(CPSⅡ)并表征其反应效果。通过优化底物供应(调整底物浓度与引入L-谷氨酰胺合成酶)对CK与CPSⅡ的催化反应进行优化。【结果】在大肠杆菌中过表达OTC,建立细胞水平氨甲酰磷酸检测体系。在此基础上比较不同来源的CK,发现大肠杆菌来源的CK效果最好,50mmol/LNH4HCO3条件下全细胞催化9h得到2.95±0.15mmol/LL-瓜氨酸;过表达CPSⅡ时,50mmol/LL-谷氨酰胺催化9h得到3.16±0.29 mmol/L L-瓜氨酸。通过改变底物NH4HCO3浓度和引入外源L-谷氨酰胺合成酶(GS)等方式对CK与CPSⅡ的催化反应分别进行优化后,100 mmol/L NH4HCO3条件下,L-瓜氨酸浓度分别提高至4.67±0.55mmol/L和6.12±0.38mmol/L,且过表达GS后CPSⅡ途径可以利用NH3,不需要额外添加L-谷氨酰胺。【结论】引入L-谷氨酰胺合成酶后的CPSⅡ途径合成氨甲酰磷酸的能力优于CK途径,为精氨酸、嘧啶及其衍生物的合成提供了一种更加高效的策略。  相似文献   

16.
17.
S Stack  R D Gray  S V Pizzo 《Biochemistry》1991,30(8):2073-2077
Laminin is a large multidomain glycoprotein with diverse biological activities which include stimulation of neurite outgrowth, enhancement of tumor metastasis, and promotion of cell growth, adhesion, and differentiation. A 19 amino acid synthetic peptide derived from the E8 fragment of the laminin A chain (Cys-Ser-Arg-Ala-Arg-Lys-Gln-Ala-Ala-Ser-Ile-Lys-Val-Ala-Val-Ser-Ala-Asp -Arg- NH2) was identified which promotes metastasis and stimulates collagenase IV activity in the culture medium of B16 melanoma cells (Kanemoto et al., 1990). We report that this peptide, here designated LamA2091-2108, is also a potent stimulator of tissue plasminogen activator (t-PA)-catalyzed plasminogen activation, resulting in a 22-fold increase in the kcat/Km of the activation reaction. The activity of purified type I and type IV collagenase was inhibited by LamA2091-2108 with IC50 values of 3 and 43 microM, respectively. These data support an alternative mechanism for the appearance of collagenase activity in the culture media of melanoma cells, namely, that the peptide stimulates plasminogen activation, subsequently generating collagenase activity.  相似文献   

18.
CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.  相似文献   

19.
紫茎泽兰(Eupatorium adenophorum)入侵喀斯特生态系统导致群落多样性和稳定性降低是该区域面临的重要生态问题,丛枝菌根(Arbuscular mycorrhizae,AM)通过根系外延菌丝互联不同物种个体影响植物养分竞争,但如何调控入侵种与乡土种地上地下资源竞争分配尚不清楚。以入侵种紫茎泽兰和乡土种黄花蒿(Artemisia annua)为研究对象,使用由1个竞争室和2个种植室所组成的微生态系装置。针对两物种对竞争室养分资源利用,采用20 μm和0.45 μm尼龙网设置共同竞争(CC)、单一利用(SU)和对照(CK)处理,并对上述处理进行AM真菌接种(M+)与不接种(M-),分析不同处理下紫茎泽兰与黄花蒿地下地上生物量及氮磷养分分配。结果表明:就地上部分而言,比较M+与M-,三种竞争方式的紫茎泽兰磷吸收量均显著表现为M+ > M-,但黄花蒿在M+与M-间无显著差异;比较3种竞争方式,M+下紫茎泽兰氮吸收量和黄花蒿生物量及氮磷吸收量表现为SU>CK,黄花蒿地上生物量、氮磷吸收量则表现为CCSU;M+下CC处理紫茎泽兰地上氮吸收量显著高于黄花蒿;M-下黄花蒿氮磷吸收量显著表现为CC和SU>CK,但紫茎泽兰在CC、SU和CK间无显著差异。就地下部分而言,三种竞争方式的紫茎泽兰地下生物量、氮磷吸收量显著表现为M+ > M-,但黄花蒿在M+与M-间无显著差异;比较三种竞争方式,M+下紫茎泽兰氮吸收量在CC与SU间无显著差异,但SU>CK;比较植物间,M+条件下,CC和SU处理的紫茎泽兰氮磷吸收量均显著高于黄花蒿,而M-条件下紫茎泽兰与黄花蒿生物量和氮磷吸收量在三种竞争方式间均无显著差异。研究表明,AM真菌通过菌根网络调控入侵种和乡土种的竞争能力,影响公用土壤养分资源在植株地上地下的资源分配并提高入侵植物从菌根共生体中获得收益促进其入侵。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号