首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The objectives of this study were: (i) to evaluate genetic relatedness among Aspergillus section Flavi strains isolated from soil and peanut seeds in Argentina; (ii) to determine if AFLP molecular markers could be useful to identify isolates up to species level, and to correlate these markers with the isolates' toxigenic potentials and/or vegetative compatibility group (VCG) affiliations. METHODS AND RESULTS: Amplified fragment length polymorphism (AFLPs) analysis was applied to compare 82 isolates of Aspergillus section Flavi. Cluster analysis showed a clear separation of A. flavus and A. parasiticus, and comparison of fingerprints revealed several specific markers for each group of isolates. AFLP analysis indicates that no genotypical differences can be established between aflatoxigenic and nonaflatoxigenic producers in both species analysed. In addition, candidate AFLP markers associated with a particular VCG were not found. CONCLUSIONS: There was a concordance between morphological identification and separation up to species level using molecular markers. The findings of specific bands for A. flavus and A. parasiticus may be useful for the design of specific PCR primers in order to differentiate these species and detect them in food. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study provides new data on molecular characterization of Aspergillus section Flavi in Argentina.  相似文献   

2.
AIMS: Section Flavi is one of the most significant sections in the genus Aspergillus. Taxonomy of this section currently depends on multivariate approaches, entailing phenotypic and molecular traits. This work aimed to identify isolates from section Flavi by combining various classic phenotypic and genotypic methods as well as the novel approach based on spectral analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF ICMS) and to evaluate the discriminatory power of the various approaches in species identification. METHODS AND RESULTS: Aspergillus section Flavi isolates obtained from Portuguese almonds were characterized in terms of macro- and micromorphology, mycotoxin pattern, calmodulin gene sequence and MALDI-TOF protein fingerprint spectra. For each approach, dendrograms were created and results were compared. All data sets divided the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus and Aspergillus tamarii. In the A. flavus clade, molecular and spectral analyses were not able to resolve between aflatoxigenic and nonaflatoxigenic isolates. In the A. parasiticus cluster, two well-resolved clades corresponded to unidentified taxa, corresponding to those isolates with mycotoxin profile different from that expected for A. parasiticus.  相似文献   

3.
Forty-three isolates of Aspergillus caelatus, whose vegetative compatibility groups (VCGs) have been identified, were assessed by DNA fingerprinting using a repetitive sequence DNA probe (pAF28) cloned from A. flavus. Thirteen distinct DNA fingerprint groups or genotypes were identified among the 43 isolates. Twenty-four isolates belonging to VCG 1 produced identical DNA fingerprints and included isolates from the United States and Japan. Four other DNA fingerprint groups had multiple isolates sharing identical fingerprints corresponding to VCGs 2, 3, 12 and 13. Eight of the 13 fingerprint groups corresponding to VCGs 4-11 were represented by a single isolate with a unique fingerprint pattern. These results provide further confirmation that the pAF28 probe can distinguish VCGs of species within Aspergillus section Flavi based on DNA fingerprint patterns and that the probe can be used to estimate the number of VCGs in a sample population. Most of the A. caelatus isolates produced fewer restriction fragments and weakly hybridized with the repetitive DNA probe pAF28 compared to hybridization patterns obtained with A. flavus, suggesting less homology of the probe to A. caelatus genomic DNA.  相似文献   

4.
Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described. They are Aspergillus mottae, A. sergii and A. transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examined morphology, extrolite production and DNA sequence data to characterize these isolates and describe the new species. Phylogenetic analysis showed that A. transmontanensis and A. sergii form a clade with A. parasiticus whereas A. mottae shares a most recent common ancestor with the combined A. flavus and A. parasiticus clade.  相似文献   

5.
Cary JW  Klich MA  Beltz SB 《Mycologia》2005,97(2):425-432
Most aspergilli that produce aflatoxin are members of Aspergillus section Flavi, however isolates of several Aspergillus species not closely related to section Flavi also have been found to produce aflatoxin. Two of the species, Aspergillus ochraceoroseus and an undescribed Aspergillus species SRRC 1468, are morphologically similar to members of Aspergillus section Circumdati. The other species have Emericella teleomorphs (Em. astellata and an undescribed Emericella species SRRC 2520) and are morphologically distinctive in having ascospores with large flanges. All these aflatoxin-producing isolates were from tropical zones near oceans, and none of them grew on artificial media at 37 C. Aflatoxins and sterigmatocystin production were quantified by high-pressure liquid chromatography (HPLC) and confirmed by HPLC-mass spectrometry (LC-MS) detection. Phylogenetic analyses were conducted on these four species using A. parasiticus and Em. nidulans, (which produce aflatoxin and the aflatoxin precursor sterigmatocystin, respectively) for comparison. Two aflatoxin/sterigmatocystin biosynthesis genes and the beta tubulin gene were used in the analyses. Results showed that of the new aflatoxin-producers, Aspergillus SRRC 1468 forms a strongly supported clade with A. ochraceoroseus as does Emericella SRRC 2520 with Em. astellata SRRC 503 and 512.  相似文献   

6.
AIMS: Antagonist activity of Kluyveromyces spp. isolates on Aspergillus section Flavi was studied. METHODS AND RESULTS: The screening of isolates were made through studies of growth at different water activities and temperatures, index of dominance (I(D)), ecological similarity, antifungal activity and impact on aflatoxin B1 accumulation. High optical density was obtained at 25 and 30 degrees C and 48 h of incubation. Cell growth decreases with decrease in water activity. The predominant interaction was mutual intermingling at a(w) = 0.982 and 0.955, while at a(w) = 0.999 and 0.937 mutual inhibition for contact was exhibited. All isolates were catabolically identical to Aspergillus section Flavi and compete by nutritional source. At high water activities yeasts showed inhibitory activity on Aspergillus strains, inhibition percentages varied between 75 and 100%. The isolates Y9, Y14, Y16, Y22, Y25 and Y33 showed antifungal activity and inhibitory activity on aflatoxin B1 accumulation at all water activities assayed from all Aspergillus section Flavi strains. CONCLUSIONS: The data show that the isolates selected in a wide range of environmental conditions could exert their roll like biological control agents for Aspergillus section Flavi in storage maize ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Isolates of Kluyveromyces spp. may have practical value in the postharvest control of storage maize.  相似文献   

7.
Ito  Yoko 《Mycopathologia》1998,144(3):169-175
Fungi in Aspergillus section Flavi include both aflatoxin producers and non-producers. Aspergillus caelatus is a recently described non-aflatoxigenic species in this section, which has some common characteristics with A. tamarii, such as yellowish brown color and double walled spores. In contrast to the morphological similarities, all of the A. caelatus isolates tested produced no cyclopiazonic acid whereas most isolates of A. tamarii produce this compound. There are six nucleotide differences that distinguish the DNA sequences of these two species in the regions of ITS1, ITS2, 5.8S rDNA and 28S rDNA and this is a consistent difference. Both species were isolated from acidified field soils, but A. tamarii isolates were more common than A. caelatus in highly acidic soils. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The objective of this study was to evaluate the ability of the Aspergillus flavus pAF28 DNA probe to produce DNA fingerprints for distinguishing among genotypes of Petromyces alliaceus (Aspergillus section Flavi), a fungus considered responsible for the ochratoxin A contamination that is occasionally observed in California fig orchards. P. alliaceus (14 isolates), Petromyces albertensis (one isolate), and seven species of Aspergillus section Circumdati (14 isolates) were analyzed by DNA fingerprinting using a repetitive sequence DNA probe pAF28 derived from A. flavus. The presence of hybridization bands with the DNA probe and with the P. alliaceus or P. albertensis genomic DNA indicates a close relationship between A. flavus and P. alliaceus. Twelve distinct DNA fingerprint groups or genotypes were identified among the 15 isolates of Petromyces. Conspecificity of P. alliaceus and P. albertensis is suggested based on DNA fingerprints. Species belonging to Aspergillus section Circumdati hybridized only slightly at the 7.0-kb region with the repetitive DNA probe, unlike the highly polymorphic hybridization patterns obtained from P. alliaceus and A. flavus, suggesting very little homology of the probe to Aspergillus section Circum dati genomic DNA. The pAF28 DNA probe offers a tool for typing and monitoring specific P. alliaceus clonal populations and for estimating the genotypic diversity of P. alliaceus in orchards, vineyards, or crop fields.  相似文献   

9.
Phenotypic features and sequences of the internal transcribed spacer (ITS) regions and the 5.8 S rRNA gene of type or neotype strains and other isolates of the 17 species currently assigned to Aspergillus section Circumdati and some potentially related species were analyzed. Parsimony analysis of sequence data indicated that Aspergillus section Circumdati is paraphyletic. Aspergillus campestris, A. lanosus, and A. dimorphicus with A. sepultus were found to be more closely related to Aspergillus sections Candidi, Flavi, and Cremei, respectively. These results were also supported by phenotypic data. A. robustus and A. ochraceoroseus were found not to be related to any of the species examined. Species of the proposed revised Aspergillus section Circumdati formed two main clades, which could also be distinguished based on phenotypic methods. Phylogenetic analysis of sequence data of other isolates assigned to species of the revised section indicates that either some of these isolates were misidentified or species concepts of A. ochraceus, A. melleus, and A. petrakii should be reconsidered.  相似文献   

10.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   

11.
AIMS: Populations of Aspergillus section Flavi were studied from a commercial field of maize in Río Cuarto, Córdoba, Argentina. METHODS AND RESULTS: The Aspergillus species were isolated from soil, debris and insects during three periods: pre-planting, growing maize and post-harvest. The colony count from non-rhizospheric soil in the pre-planting period was higher than in growing maize and the post-harvest period. Debris samples analysed during all periods showed similar infection percentages for Aspergillus section Flavi. The samples of insects collected during the maize-growing period showed a lower percentage of Aspergillus isolates than the samples from soil and debris. Aflatoxigenic strains were present in lower levels in each component of the agroecosystem studied. All the strains that produced sclerotia were L strains. CONCLUSIONS: In this field agroecosystem, the only strains with a high probability for transfer to the storage agroecosystem were L strains with low toxigenic potential. SIGNIFICANCE AND IMPACT OF THE STUDY: Maize pre-harvest contamination with aflatoxigenic inoculum was not significant.  相似文献   

12.
Sequences of the intergenic transcribed spacer regions and the 5.8S rRNA gene (455 nucleotides) of type strains or representative isolates of 23 species and subspecies either currently assigned to Aspergillus subgenus Circumdati section Flavi or other closely related sections, were analyzed. Parsimony analysis of sequence data indicated that species of Aspergillus section Flavi form distinct clades. The three main clades identified based on sequence data could also be distinguished based on colony color, and their ubiquinone systems. The 'A. flavus' clade includes species characterized with Q-10(H(2)) as their main ubiquinone, conidial colors in shades of green, and dark sclerotia. The 'A. tamarii' clade involves species with ubiquinone system Q-10(H(2)), and conidia in shades of olive to brown, while the 'A. alliaceus' clade consists of species with Q-10 ubiquinone system, and conidia in shades of ocher. The synnematous species A. coremiiformis was found to be closely related to species in the 'A. tamarii' clade. A. thomii and A. terricola var. americana were found to be related to the 'A. flavus' clade in spite of producing brownish colonies. Three species, A. nomius, A. avenaceus, and A. leporis were found to form separate lineages not closely related to any of the main clades identified. It is suggested that A. clavatoflavus and A. zonatus be excluded from Aspergillus section Flavi. Phylogenetic analysis of partial 26S rRNA gene sequences (564 nucleotides) supported our findings.  相似文献   

13.
Horn BW 《Mycologia》2005,97(1):202-217
Soil is a source of primary inoculum for Aspergillus flavus and A. parasiticus, fungi that produce highly carcinogenic aflatoxins in peanuts. Aflatoxigenic fungi commonly invade peanut seeds during maturation, and the highest concentrations of aflatoxins are found in damaged seeds. A laboratory procedure was developed in which viable peanut seeds were wounded and inoculated with field soil containing natural populations of fungi, then incubated under different conditions of seed water activity and temperature. Densities of Aspergillus section Flavi in soil used for inoculating seeds were low relative to the total numbers of filamentous fungi (<1%). Aspergillus species from section Flavi present in soil included A. flavus morphotypes L and S strains, A. parasiticus, A. caelatus, A. tamarii and A. alliaceus. Wounding was required for high incidences of fungal colonization; viability of wounded seeds had little effect on colonization by Aspergillus species. Peanut seeds were colonized by section Flavi species as well as A. niger over broad ranges of water activity (0.82-0.98) and temperature (15-37 C), and the highest incidences of seed colonization occurred at water activities of 0.92-0.96 at 22-37 C. A. parasiticus colonized peanut seeds at lower temperatures than A. flavus, and cool soil temperatures relative to temperatures of aerial crop fruits might explain why A. parasiticus is found mostly in peanuts. Other fungi, dominated by the genera Penicillium, Fusarium and Clonostachys, colonized seeds primarily at water activities and temperatures suboptimal for section Flavi species and A. niger. Eupenicillium ochrosalmoneum frequently sporulated on the conidial heads of section Flavi species and showed specificity for these fungi. The inoculation of wounded viable peanut seeds with soil containing natural populations of fungi provides a model system for studying the infection process, the interactions among fungi and those factors important in aflatoxin formation.  相似文献   

14.
Soil is a reservoir for Aspergillus flavus and A. parasiticus, fungi that commonly colonize peanut seeds and produce carcinogenic aflatoxins. Densities of these fungi in soil vary greatly among fields and may influence the severity of peanut infection. This study examined the relationship between soil density of Aspergillus species and the incidence of peanut seed colonization under laboratory conditions. Viable peanut seeds were wounded and inoculated with 20 soils differing in composition and density of Aspergillus species and were then incubated for 14 days at 37 degrees C (seed water activity = 0.92). The effect of soil density of individual section Flavi species (A. flavus strains L and S, A. parasiticus, A. caelatus, and A. tamarii), section Nigri, and A. terreus on the incidence of seed colonization was best expressed as a function of exponential rise to maximum. Exponential curves often rose to maximum percentages of seed colonization by section Flavi species that were well below 100% despite high species densities in some soils. Competition primarily among section Flavi species may explain the reduced incidences of seed colonization. An average of two or fewer propagules of each Aspergillus species in the soil at the wound site was required for colonization of 20% of peanut seeds. Other fungal species were capable of invading peanut seeds only when soil densities of sections Flavi and Nigri species were low.  相似文献   

15.
McAlpin CE 《Mycologia》2004,96(5):937-947
The ability of Aspergillus caelatus, a species in Aspergillus section Flavi, to produce synnemata and sclerotia was investigated. Forty-eight isolates of A. caelatus differed widely in their production of synnemata and sclerotia; 83% of the isolates produced varying numbers of synnemata and sclerotia, and 17% produced neither sclerotia nor synnemata. Most strains produced synnemata and mostly sessile and few stipitate sclerotia on the same Czapek agar (CZA) plate. Two strains of A. caelatus were selected for further study because of the contrasting morphology of their synnemata and sclerotia. Those strains are NRRL 25528, the type species and a representative of the synnema- and black sclerotium-forming isolates, and NRRL 26119, considered an atypical strain that produced numerous synnemata and few slightly melanized or tan sclerotia. The induction and maturation of sclerotia in A. caelatus were affected greatly by the type of media as well as the kind and concentration of the carbon and nitrogen sources. CZA induced synnema and sclerotium production in both strains, whereas other media did not. Production of abundant synnemata and sclerotia also occurred when the carbon source in CZA is replaced with dextrose, xylose, cellobiose, melibiose and trehalose. CZA amended with serine, threonine, KNO(3) and NaNO(3) induced the production of numerous sclerotia and synnemata. For both strains, the optimal levels of sucrose and NaNO(3) for maximum production of synnemata or sclerotia were 3 and 0.9%, respectively. The production of synnemata and stipitate/sessile sclerotia by several wild-type strains of A. caelatus further substantiates previous suggestions for an evolutionary link between Aspergillus section Flavi and synnematal species A. togoensis, which also produces stipitate sclerotia.  相似文献   

16.
Assessment of toxigenic fungi on Argentinean medicinal herbs   总被引:6,自引:0,他引:6  
This work was performed to determine the incidence of toxigenic fungi and their mycotoxins on 152 dried medicinal and aromatic herbs, belonging to 56 species, which are used as raw material for drugs. International methodologies for fungal enumeration and identification were applied as well as TLC and HPLC techniques for toxins detection. The 52% out of 152 samples were contaminated with species from Aspergillus genus, 27% belonging to the Flavi section and 25% to the Circumdati section. The 16% of the total samples was contaminated with species from Fusarium genus. Aspergillus flavus and A. parasiticus (Flavi section), were the predominant species isolated, 50% out of 40 isolates were toxigenic. Aflatoxin concentrations ranged from 10 to 2000 ng/g. Only 26% of isolates from the Circumdati section (A. alliaceus, A. ochraceus and A. sclerotiorum) produced ochratoxin A in low concentrations between 0.12 and 9 ng/g. From a total of 29 strains of Fusarium spp., 27.5% were Fusarium verticillioides and F. proliferatum, which produced fumonisin Bland fumonisin B2 ranged from 20 to 22000 microg/g and from 5 to 3000 microg/g respectively. The remaining species, F. equiseti, F. oxysporum, F. semitectum, F. compactum, F. sombucinum and F. solani were able to produce neither group A and B trichothecenes nor zearalenone. The incidence of A. ochraceus and Fusarium spp. and their toxigenic capacities on medicinal herbs were studied for the first time in Argentina. It would be important to look for natural contamination to define acceptability Limits which allow the control of sanitary quality of medicinal herbs used as phytotherapic medicines in several countries.  相似文献   

17.
Klich MA  Cary JW  Beltz SB  Bennett CA 《Mycologia》2003,95(6):1252-1260
Aspergillus ochraceoroseus produces the yellow-gold conidia and other characteristics of Aspergillus subgenus Circumdati section Circumdati. However, this species produces aflatoxin, a secondary metabolite characteristic of some members of subgenus Circumdati section Flavi and sterigmatocystin, a related secondary metabolite usually associated with subgenus Nidulantes sections Nidulantes and Versicolores, as well as members of several other genera. Our morphological data support the placement of A. ochraceoroseus in subgenus Circumdati. Sequence data from A. ochraceoroseus aflatoxin and sterigmatocystin genes aflR and nor-1/stcE, as well as 5.8S ITS and beta tubulin genes, were compared to those of aspergilli in sections Circumdati, Flavi, Nidulantes and Versicolores. In the sequence comparisons, A. ochraceoroseus was related more closely to the species in subgenus Nidulantes than to species from subgenus Circumdati.  相似文献   

18.
Horn BW  Peterson SW 《Mycologia》2008,100(1):12-19
The genus Penicillium comprises species that mostly colonize plant matter. However early reports suggest that several species are capable of parasitizing Aspergillus and sporulating on the conidial heads of the host. More recently Eupenicillium ochrosalmoneum and E. cinnamopurpureum, both with Penicillium anamorphs, have been observed sporulating on the heads of Aspergillus species belonging to section Flavi during the colonization of peanut seeds. Little is known about the host specificity underlying these Aspergillus-Penicillium associations. In this study Aspergillus species representing nine taxonomic sections were paired in culture with E. ochrosalmoneum, E. cinnamopurpureum and two unnamed Penicillium species. Eupenicillium ochrosalmoneum, E. cinnamopurpureum and Penicillium sp. 1 sporulated predominantly on the heads of section Flavi species. In contrast Penicillium sp. 2 was restricted to the heads of section Nigri species. All species spread across Aspergillus colonies by means of aerial hyphae that grew from head to head. Additional studies are required to clarify whether Eupenicillium and Penicillium species are parasitic or simply epibiotic on their hosts.  相似文献   

19.
For genetic identification of Aspergillus Section Flavi isolates and detection of intraspecific variation, we developed a novel method for heteroduplex panel analysis (HPA) utilizing fragments of the internal transcribed spacer (ITS) regions (ITS1-5.8S-ITS2) of the rRNA gene that was PCR amplified with universal primers. The method involves formation of heteroduplexes with a set of reference fragments amplified from Aspergillus flavus, A. parasiticus, A. tamarii, and A. nomius and subsequent minislab vinyl polymer gel electrophoresis. The test panel is compared with species-specific standard panels (F-1, P-1, T-1, and N-1) generated by pairwise reannealing among four reference fragments. Of 90 test panels, 89 succeeded in identifying the species and 74 were identical to one of the four standard panels. Of the 16 new panels, 11 A. flavus/A. oryzae panels were identical and typed as F-2 and 4 of 5 A. nomius panels were typed as N-2 or N-3. The other strain, A. nomius IMI 358749, was unable to identify the species because no single bands were formed with any of the four reference strains. DNA sequencing revealed that our HPA method has the highest sensitivity available and is able to detect as little as one nucleotide of diversity within the species. When Penicillium or non-Section Flavi Aspergillus was subjected to HPA, the resulting bands of heteroduplexes showed apparently lower mobility and poor heteroduplex formation. This indicates that HPA is a useful identification method without morphological observation and is suitable for rapid and inexpensive screening of large numbers of isolates. The HPA typing coincided with the taxonomy of Section Flavi and is therefore applicable as an alternative to the conventional methods (Samson, R. A., E. S. Hoekstra, J. C. Frisvad, and O. Filtenborg, p. 64-97, in Introduction to Food- and Airborne Fungi, 6th ed., 2000).  相似文献   

20.
We characterize the mating-type genes in Aspergillus flavus,Aspergillus parasiticus and Petromyces alliaceus. A single MAT1-1 or MAT1-2 gene was detected in the genomes of A. flavus and A. parasiticus, which is consistent with a potential heterothallic organization of MAT genes in these species. In contrast, the only known, functionally homothallic species in Aspergillus section Flavi, P. alliaceus, has tightly linked (<2kb) MAT1-1 and MAT1-2 genes, typical of other self-fertile homothallic euascomycetes. This is the first example of linked MAT genes within a homothallic species of Aspergillus. We tested the null hypothesis of no significant difference in the frequency of MAT1-1 and MAT1-2 in A. flavus and A. parasiticus sampled from a single peanut field in Georgia. For each species, mating-type frequencies were determined for the total population samples and for samples that were clone-corrected based on vegetative compatibility groups (VCGs) and aflatoxin gene cluster haplotypes. There was no significant difference in the frequency of the two mating types for A. flavus and A. parasiticus in either VCG or haplotype clone-corrected samples. The existence of both mating-type genes in equal proportions in A. flavus and A. parasiticus populations, coupled with their expression at the mRNA level and the high amino acid sequence identity of MAT1-1 (77%) and MAT1-2 (83%) with corresponding homologs in P. alliaceus, indicates the potential functionality of these genes and the possible existence of a sexual state in these agriculturally important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号