首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as "Trichoderma harzianum" Rifai and one biocontrol strain recognized as T. viride, was carried out using several molecular techniques. A certain degree of polymorphism was detected in hybridizations using a probe of mitochondrial DNA. Sequencing of internal transcribed spacers 1 and 2 (ITS1 and ITS2) revealed three different ITS lengths and four different sequence types. Phylogenetic analysis based on ITS1 sequences, including type strains of different species, clustered the 17 biocontrol strains into four groups: T. harzianum-T. inhamatum complex, T. longibrachiatum, T. asperellum, and T. atroviride-T. koningii complex. ITS2 sequences were also useful for locating the biocontrol strains in T. atroviride within the complex T. atroviride-T. koningii. None of the biocontrol strains studied corresponded to biotypes Th2 or Th4 of T. harzianum, which cause mushroom green mold. Correlation between different genotypes and potential biocontrol activity was studied under dual culturing of 17 BCAs in the presence of the phytopathogenic fungi Phoma betae, Rosellinia necatrix, Botrytis cinerea, and Fusarium oxysporum f. sp. dianthi in three different media.  相似文献   

2.
Menendez AB  Godeas A 《Mycopathologia》1998,142(3):153-160
Two experiments of biological control of Sclerotinia sclerotiorum, one in the greenhouse and the other in the field, were carried out with soybean and Trichoderma harzianum as host and antagonist, respectively. Significant control of disease was achieved in both experiments, but there were no significant differences in plant growths. In the greenhouse, the application of T. harzianum as alginate capsules, increased the survival of soybean plants more than 100% with respect to the disease treatment. In the field, T. harzianum treated plants survived 40% more than those from the disease treatment, showing a similar survival level to control plants. Besides, a significant reduction (62.5%) in the number of germinated sclerotia was observed in the Trichoderma treated plot. Chitinase and 1,3-β- glucanase activities were detected when T. harzianum was grown in a medium containing Sclerotinia sclerotiorum cell walls as sole carbon source. In addition, electrophoretic profiles of proteins induced in T. harzianum showed quantitative differences between major bands obtained in the media induced by S. sclerotiorum cell walls and that containing glucose as a sole carbon source. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Control of Grapevine Grey Mould with Trichoderma harzianum T39   总被引:1,自引:0,他引:1  
The efficacy of a formulation of Trichoderma harzianum T39 for control of grey mould (Botrytis cinerea) on grapevine was examined in 133 experiments conducted under diverse commercial conditions. The experiments were carried out between 1988 and 1994 in 19 countries and on 34 varieties. The average disease incidence in the untreated plots of all experiments was 42 2.3% (mean standard error). In general, the reduction of disease achieved by T. harzianum application was lower than that obtained by chemical fungicides: 36.3 2.7% disease reduction in biocontrol treatments and 52.3 2.6% in the exclusively chemical treatments. Control efficacy declined when the interval between application and assessment dates increased to 5 weeks. The experiments also included treatments in which T. harzianum was integrated with chemical fungicides, the two being applied alternately, and a reduced chemical treatment in which only chemicals were applied, and only at the times when chemicals were applied in the integrated treatment. The mean control efficacy in these treatments was 55.8 3.2% and 44.2 4.9% respectively. The roles of the integration of biological and chemical compounds in reducing pesticide residues in fruit at harvest and lowering the pressure towards development of fungicide-resistance populations of B. cinerea are discussed.  相似文献   

4.
We have used isolates of Trichoderma spp. collected in South-East Asia, including Taiwan and Western Indonesia, to assess the genetic and metabolic diversity of endemic species of Trichoderma. Ninety-six strains were isolated in total, and identified at the species level by analysis of morphological and biochemical characters (Biolog system), and by sequence analysis of their internal transcribed spacer regions 1 and 2 (ITS1 and 2) of the rDNA cluster, using ex-type strains and taxonomically established isolates of Trichoderma as reference. Seventy-eight isolates were positively identified as Trichoderma harzianum/Trichoderma inhamatum (37 strains) Trichoderma virens (16 strains), Trichoderma spirale (8 strains), Trichoderma koningii (3 strains), Trichoderma atroviride (3 strains), Trichoderma asperellum (4 strains), Hypocrea jecorina (anamorph: Trichoderma reesei; 2 strains), Trichoderma viride (2 strains), Trichoderma hamatum (1 strain), and Trichoderma ghanense (1 strain). Analysis of biochemical characters revealed that T. virens, T. spirale, T. asperellum, T. koningii, H. jecorina, and T. ghanense formed clearly defined clusters, thus exhibiting species-specific metabolic properties. In biochemical character analysis T. atroviride and T. viride formed partially overlapping clusters, indicating that these two species may share overlapping metabolic characteristics. This behavior was even more striking with T. harzianum/T. inhamatum where genotypes defined on the basis of ITS1 and 2 sequences overlapped significantly with adjacent genotypes in the biochemical character analysis, and four strains from the same location (Bali, Indonesia) even clustered with species from section Longibrachiatum. The data indicate that the T. harzianum/T. inhamatum group represents species with high metabolic diversity and partially unique metabolic characteristics. Nineteen strains yielded three different ITS1/2 sequence types which were not alignable with any known species. They were also uniquely characterized by morphological and biochemical characters and therefore represent three new taxa of Trichoderma.  相似文献   

5.
木霉(Trichoderma spp.)对三种引起大棚蔬菜病害病原菌的影响   总被引:5,自引:0,他引:5  
通过木霉属(Trichoderma) 3菌株与双鸭山蔬菜大棚中的黄瓜枯萎病菌(FusariumoxysporumSchlecht.f.cucumerinum)、黄瓜果腐病菌(PhytophthoracapsiciLeonian)、菜豆叶枯病菌(Cladosporiumsp .)的对峙培养试验,结果表明:绿色木霉1(TrichodermaviridePers.exGray 1)可作为双鸭山蔬菜大棚中的黄瓜枯萎病、黄瓜果腐病、菜豆叶枯病3种病害的生物防治拮抗菌加以利用,该拮抗菌对菜豆叶枯病菌抑制效果最好;绿色木霉2 (Tricho dermaviride 2 )对黄瓜果腐病菌抑制效果最好;而哈茨木霉(TrichodermaharzianumRifai)对以上3种病原菌都有抑制效果,对菜豆叶枯病菌抑制效果最好。从试验结果还可看出,绿色木霉2对黄瓜枯萎病菌和菜豆叶枯病菌的生长有促进作用。  相似文献   

6.
The effects of soil amendment with rapeseed meal from Brassica napus cv. 'Dwarf Essex' (high glucosinolate concentrations) and 'Stonewall' (low glucosinolate concentrations) on the biological control activity of Trichoderma harzianum towards Sclerotinia sclerotiorum and Aphanomyces euteiches were evaluated. Trichoderma harzianum added to soil reduced myceliogenic germination of S. sclerotiorum by 94%, but did not affect carpogenic germination. In contrast, 100% reduction in carpogenic germination was observed in soil amended with Dwarf Essex meal, along with a 33% reduction in myceliogenic germination. With Stonewall meal as soil amendment, carpogenic germination was reduced by 44% and myceliogenic germination was not affected. Both Dwarf Essex and Stonewall meals inhibited colonization of sclerotia in soil by T. harzianum, from 100% to 0% and 8%, respectively, so that biocontrol activity of T. harzianum was reduced in the presence of either meal. Aphanomyces euteiches root rot of pea was significantly reduced by T. harzianum alone (100%), by amendment with Dwarf Essex meal alone (77%), and by T. harzianum in combination with Dwarf Essex meal (100%). Amendment with Stonewall meal alone did not control root rot, and combination of Stonewall meal with T. harzianum reduced the biocontrol efficacy of T. harzianum.  相似文献   

7.
We tested Trichoderma harzianum as a biocontrol agent for Rhizoctonia solani AG2-1, using six natural antifungal materials to improve its efficacy. Among the six materials tested, peony (Paeonia suffruticosa) root bark (PRB) showed the strongest antifungal activity against R. solani AG2-1, and was not antagonistic to T. harzianum. Scanning electron microscopy showed that treatment with PRB extract resulted in shortened and deformed R. solani AG2-1 hyphal cells. The control of radish damping-off caused by R. solani AG2-1 was greatly increased by combined treatments of T. harzianum and PRB, as compared with either of the two treatments alone, with the control effect increased from 42.3-51.5% to 71.4-87.6%. The antifungal compound in PRB, which was isolated in chloroform and identified as paeonol by mass spectrometry, 1H NMR, and 13C NMR analyses, inhibited the growth of R. solani AG2-1 but not that of T. harzianum. Thus, PRB powder or extract may be used as a safe additive to T. harzianum to improve the control of the soil borne diseases caused by R. solani AG2-1.  相似文献   

8.
Isozyme and protein electrophoresis data from mycelial extracts of 27 isolates of Trichoderma harzianum, 10 isolates of T. aureoviride and 10 isolates of T. longibrachiatum from Southern Peninsular Malaysia were investigated. The eight enzyme and a single protein pattern systems were analyzed. Three isozyme and total protein patterns were shown to be useful for the detection of three Trichoderma species. The isozyme and protein data were analyzed using the Nei and Li Dice similarity coefficient for pairwise comparison between individual isolates, species isolate group, and for generating a distance matrix. The UPGMA cluster analysis showed a higher degree of relationship between T. harzianum and T. aureoviride than to T. longibrachiatum. These results suggested that the T. harzianum isolates had high levels of genetic variation compared to the other isolates of Trichoderma species.  相似文献   

9.
The antibiotic activity of 70 isolates belonging to the genera Aspergillus, Penicillium, Fusarium, Alternaria and Trichoderma was tested as preliminary screening. The highest activity was obtained with three Penicillium oxalicum isolates, one Penicillium decumbens isolate and the Trichoderma harzianum isolate. After that, we chose these five isolates in order to carry out other studies with bacteria, fungi and insects. Extracts from these isolates were obtained. The extracts were tested for antibiotic activity with positive results, which implies that metabolite production is involved in this antagonistic effect. The highest activity was shown by T. harzianum and P. oxalicum extracts, but there was high variability among P. oxalicum isolates.  相似文献   

10.
Cowpea seeds treated with three Trichoderma spp. at four inoculum doses, and at four exposure times in three different formulations were planted in soils amended with Macrophomina phaseolin a, and assessed for stand establishment and post-emergence damping off. The highest percentage plant stands at 21 days after planting were 66% for T. koningii and T. harzianum , and 51% for Trichoderma sp., at 6.8 ×10 7 , 2.0 ×10 10 , and 1.0 ×10 7 colony forming units (CFUs) ml -1 , respectively. Across sampling dates and irrespective of time of exposure to the formulations, the T. harzianum and T. koningii formulations resulted in significantly greater percentage plant stands than the seeds treated with a Trichoderma sp. and the controls. Seed treatment formulations with Trichoderma spp. were derived from propagule suspensions at the most effective inoculum dose in Tween 80, in suspension with cooked cassava starch as an adhesive, or in a slurry with uncooked cassava starch. At 21 days, the suspensions with Tween 80 and cooked starch resulted in significantly higher percentage plant stands than the control, while stands from seeds treated in a slurry formulation and starch solutions were not different. Seed exposure to the different formulations for 10, 20, 30, or 40 min, provided mixed results. Seeds treated with benomyl at 0.5 g a.i/50 g resulted in 95 and 100% stands for the two sets of experiments, respectively.  相似文献   

11.
 In a 2-year experiment at an open-air ozone fumigation field, the effects of fungicide application and low-level ozone exposure, single and combined, on fine root and mycorrhiza condition of Scots pine (Pinus sylvestris) seedlings were studied. Two different fungicides, copper oxychloride and propiconazole, with different modes of actions, were used. Propiconazole treatment reduced mycorrhizal infection in both years while copper oxychloride treatment and ozone exposure slightly stimulated mycorrhizal infection after the first year. Different mycorrhizal morphotypes showed different kinds of responses to the two fungicides. Light brown morphotype appeared to be the most sensitive one to propiconazole treatment. After the second year, ectendomycorrhizas disappeared in propiconazole treatment while in control treatment ectendomycorrhizas formed the majority of the light brown morphotype. The root biomass was not affected by fungicide treatments, but ozone exposure increased the total amount of short roots and the fresh weight of propiconazole treated roots. No significant differences in the concentrations of ergosterol, starch and total phenolics in pine roots between treatments were found. However, ergosterol concentration correlated positively with the mycorrhizal infection level. Both fungicides reduced the soil respiration compared to controls. At the ultrastructural level, both fungicides caused increased transparency and gradual granulation and degeneration of cytoplasm in the fungal symbiont of mycorrhizal short roots. Slightly elevated ozone did not have harmful effects on root ultrastructure. These results suggest that fungicides have deleterious effects on the quantity and quality of mycorrhizas in Scots pine roots and also side-effects on non-target soil fungi. Some of these deleterious effects were noticeable only at the ultrastructural level. Received: 23 June 1997 / Accepted: 11 December 1997  相似文献   

12.
Among the bacteria and fungi associated from the soil where cowpea was grown and tested for antagonism against Protomycopsis phaseoli , Bacillus sp. inhibited the radial growth, Fusarium oxysporum , yeast, Aspergillus fumigatus , Trichoderma harzianum , Trichoderma koningii and Trichoderma sp. reduced radial growth of P. phaseoli . In vitro studies showed that T. harzianum was an active hyperparasite and more effective in reducing the radial growth of P. phaseoli than T. koningii and Trichoderma sp. Spore suspensions of the three Trichoderma spp. prevented the germination of chlamydospores of P. phaseoli . In the field, when applied as spray, Trichoderma sp. was found to be more active in reducing the spread of leaf smut disease than T. harzianum and T. koningii.  相似文献   

13.
Nine isolates of Trichoderma spp. were investigated for their ability to solubilize insoluble phosphate in Pikovskaya's broth and were compared with an efficient phosphate-solubilizing bacterium Bacillus megaterium subsp. phospaticum PB that was used as the reference strain. All 9 Trichoderma isolates were found to solubilize insoluble tricalcium phosphate to various extents. Trichoderma viride (TV 97) (9.03 microg x mL(-1)), Trichoderma virens (PDBCTVs 12) (9.0 microg x mL(-1)), and Trichoderma virens (PDBCTVs 13) (8.83 microg x mL(-1)) solubilized 70% of that solubilized by the reference strain Bacillus megaterium (12.43 microg x mL(-1)). Pot culture and field evaluations with Trichoderma harzianum (PDBCTH 10), Trichoderma viride (TV 97), and Trichoderma virens (PDBCTVs 12) using chickpea (Cicer arietinum L.) 'Annegeri-1' as the test plant and rock phosphate as the phosphorus source showed significantly increased P uptake in plants treated with Trichoderma harzianum (PDBCTH 10) followed by Trichoderma virens (PDBCTVs 12) and Trichoderma viride (TV 97). Inoculation of Trichoderma spp. also showed increased growth and yield parameters of chickpea compared with the uninoculated controls under both glasshouse and field conditions.  相似文献   

14.
Trichoderma harzianum is a well-known biological control agent against fungal plant diseases. In order to select improved biocontrol strains from Trichoderma harzianum CECT 2413, a mutant has been isolated for its ability to produce wider haloes than the wild type, when hydrolysing pustulan, a polymer of beta-1,6-glucan. The mutant possesses between two and four times more chitinase, beta-1,3- and beta-1,6-glucanase activities than the wild type, produces about three times more extracellular proteins and secretes higher amounts of a yellow pigment (alpha-pyrone). This mutant performed better than the wild type during in vitro experiments, overgrowing and sporulating on Rhizoctonia solani earlier, killing this pathogen faster and exerting better protection on grapes against Botrytis cinerea.  相似文献   

15.
The ability to parasitise Sclerotinia sclerotiorum and the effect on apothecia production was evaluated for the following antagonists: Trichoderma harzianum; Trichoderma koningii; Gliocladium roseum and Chaetomium globosum. Plastic trays were filled with of steam-sterilized soil. Each one of them was infested with sclerotia of S. sclerotiorum and the culture of the antagonists. The trays were kept in a greenhouse and after 30, 60 and 90 days, evaluations were made. The rates of carpogenic germination, myceliogenic germination, mycoparasitism and destruction were evaluated. To assess carpogenic germination, the sclerotia were put in a growth chamber over moistened filter paper at 20 -/+ 2 degrees C and 12 light hours. The rates of myceliogenic germination and mycoparasitism were evaluated on Petri dishes with 2% APD. Antagonists effect on carpogenic germination was observed one month after the start of the assay. In the evaluation made at 60 and 90 days, T. harzianum; T. koningii and G. roseum kept inhibitory properties. Such inhibition was not observed in the trays containing C. globosum. In the evaluations made at 30 days, mycoparasitism rate was high in the trays with T. harzianum; T. koningii and G. roseum. G. roseum and T. harzianum destroy S. sclerotiorum sclerotia.  相似文献   

16.
The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.  相似文献   

17.
Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86% as Trichoderma asperellum, 33.33% as Trichoderma harzianum, 14.29% as Trichoderma tomentosum, 4.76% as Trichoderma koningiopsis, and 4.76% as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen.  相似文献   

18.
Four isolates of Trichoderma harzianum (ThN3, Th11, Th12 and Th16) were selected for their ability to control the in vitro development of the tomato root pathogen Pyrenochaeta lycopersici. Analysis of the mechanisms involved in biocontrol showed that the formation of non-volatile metabolites appears to be one of those involved in biocontrol of P. lycopersici by all T. harzianum isolates tested. Nevertheless, the higher secretion of chitinases, both in number of isoenzymes and activity by the Th11 strain, correlated well with its higher ability to control this agent in laboratory and greenhouse experiments as compared to the other T. harzianum isolates tested. The secretion of beta-1,3-endoglucanases and/or proteases appeared to have less significance than endochitinases in the biological control of P. lycopersici.  相似文献   

19.
We investigated the occurrence and genetic diversity of Trichoderma in the river Danube national park, a primeval, riparian forest area located south-east of Vienna (Austria) which represents one of the last cases of an original European river-floodplain landscape. Forty-six strains were isolated and identified at the species level by analysis of morphological characters, by sequence analysis of their internal transcribed spacer regions 1 and 2 (ITS 1 and 2) of the rDNA cluster and--in some cases--a fragment of the translation elongation factor 1alpha (tef1) gene, and RAPD-analysis. Twenty-one strains were positively identified as T. harzianum, thirteen as T. rossicum, four as T. cerinum, two as T. hamatum, and one each as T. atroviride and T. koningii: four strains yielded two different ITS1 and 2 as well as tef1 sequence types, which were not alignable with any known species. Our studies show that they represent two new taxa of Trichoderma.  相似文献   

20.
In this study, seven Trichoderma species (33 strains) were classified using secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. T. longibrachiatum and T. virens were independently clustered based on both internal transcribed spacer (ITS) sequence and secondary metabolite analyses. T. harzianum formed three subclusters in the ITS-based phylogenetic tree and two subclusters in the metabolitebased dendrogram. In contrast, T. koningii and T. atroviride strains were mixed in one cluster in the phylogenetic tree, whereas T. koningii was grouped in a different subcluster from T. atroviride and T. hamatum in the chemotaxonomic tree. Partial least-squares discriminant analysis (PLS-DA) was applied to determine which metabolites were responsible for the clustering patterns observed for the different Trichoderma strains. The metabolites were hetelidic acid, sorbicillinol, trichodermanone C, giocladic acid, bisorbicillinol, and three unidentified compounds in the comparison of T. virens and T. longibrachiatum; harzianic acid, demethylharzianic acid, homoharzianic acid, and three unidentified compounds in T. harzianum I and II; and koninginin B, E, and D, and six unidentified compounds in T. koningii and T. atroviride. The results of this study demonstrate that secondary metabolite profiling-based chemotaxonomy has distinct advantages relative to ITSbased classification, since it identified new Trichoderma clusters that were not found using the latter approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号