首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test whether the timing of transition to mating competency affected mitochondrial transmission patterns in D. iridis. Reciprocal crosses were made by combining mating compatible strains that differed in their competency to mate. The results were compared to crosses where both mating strains were competent at the time of combining and crosses where somatic fusion of plasmodia was allowed. The results show that the mating competency of the parental strains at the time of confronting a compatible mate does not affect mitochondrial transmission patterns, mating efficiency or the likelihood of biparental inheritance. However the timing of plasmodial formation is delayed when precompetent and competent strains are mated compared to when both strains are competent at the time of mixing. We also observed that somatic fusion of plasmodia did not appreciably increase the incidence of biparental inheritance compared to crosses where individual plasmodia were isolated. These results provide additional evidence of the variable nature of mitochondrial inheritance in D. iridis within crosses and between mating trials.  相似文献   

2.
3.
By crossing Brachionus plicatilis s.s. NH1L strain and German strain, we obtained two types of hybrids, NH1L female × German male designated as NXG and German female × NH1L male designated as GXN. To confirm the crossing of the two hybrid strains at the genetic level, random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis using 10 kinds of primers (10 and 12 mers) was carried out. Some amplified DNA fragments from RAPD of the hybrid strain showed mixed patterns of both parental strains, thus confirming that both hybrids were crossbreeds of the NH1L and German strains. Using these hybrids, we investigated the mode of mitochondrial inheritance in B. plicatilis. Full-length mtDNA of the four strains was amplified by PCR, and digested with restriction enzymes to obtain restriction fragment length polymorphism (RFLP) patterns. Both hybrid strains had the same RFLP patterns as their female parents. This result shows that mitochondrial inheritance in rotifers is maternal. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont and R. Rico-Martínez Advances in Rotifer Research  相似文献   

4.
Respiratory metabolism depends on mitochondrial DNA, yet the mechanisms that ensure the inheritance of the mitochondrial genome are largely obscure. Recent studies with Saccharomyces cerevisiae suggest that distinct factors mediate the active segregation of mitochondrial DNA during mitotic growth. The identification of the proteins required for the maintenance of the mitochondrial genome provides clues to the mechanisms of, and molecular machinery involved in, mitochondrial DNA inheritance.  相似文献   

5.
Nakamura S  Aoyama H  van Woesik R 《Protoplasma》2003,221(3-4):205-210
Summary.  The non-Mendelian inheritance of organelle DNA is common in most plants and animals. Here we examined inheritance mechanisms involved in the transfer of mitochondrial DNA. We successively backcrossed (to F5) two interfertile strains of the unicellular isogamous haploid algae Chlamydomonas reinhardtii and Chlamydomonas smithii to match nuclear backgrounds and examine transmission patterns of mitochondrial DNA by PCR analysis of cob gene sequences. Mitochondrial DNA was strictly transmitted paternally. To investigate the behavior of parental mitochondrial DNA, we used F5 progeny to form zygotes and isolated single zygotes. The results showed selective disappearance of maternal mitochondrial nucleoids occurred between 3 and 6 h after zygote formation. Received July 11, 2002; accepted September 28, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.  相似文献   

6.
M. Mirfakhrai  Y. Tanaka    K. Yanagisawa 《Genetics》1990,124(3):607-613
Restriction fragment length polymorphisms (RFLPs) were used as markers to monitor mitochondrial inheritance in the cellular slime mold, Polysphondylium pallidum. When two opposite mating types (mat1 and mat2) of closely related strains were crossed, all the haploid progeny regardless of mating type inherited their mitochondrial DNA from the mat2 parent only. When opposite mating types from more distantly related strains were crossed, most of the progeny also inherited their mitochondrial DNA from the mat2 parent, but some inherited their mitochondrial DNA from the mat1 parent. In both cases however, the transmission of mitochondrial DNA was uniparental, since in every individual progeny only one type of mitochondrial DNA exists. Moreover, in crosses involving more distantly related strains all the progeny of a single macrocyst were shown to contain the same type of mitochondrial DNA. These findings are discussed in regard to mechanisms of transmission and the possible involvement of nuclear genes in the control of transmission of mitochondrial DNA in Polysphondylium.  相似文献   

7.
This review focuses on mitochondrial biology in mammalian development; specifically, the dynamics of information transfer from nucleus to mitochondrion in the regulation of mitochondrial DNA genomic expression, and the reverse signaling of mitochondrion to nucleus as an adaptive response to the environment. Data from recent studies suggest that the capacity of embryonic cells to react to oxygenation involves a tradeoff between factors that influence prenatal growth/development and postnatal growth/function. For example, mitochondrial DNA replication and metabolic set points in nematodes may be determined by mitochondrial activity early in life. The mitochondrial drug PK11195, a ligand of the peripheral benzodiazepine receptor, has antiteratogenic and antidisease action in several developmental contexts in mice. Protein malnutrition during early life in rats can program mitochondrial DNA levels in adult tissues and, in humans, epidemiological data suggest an association between impaired fetal growth and insulin resistance. Taken together, these findings raise the provocative hypothesis that environmental programming of mitochondrial status during early life may be linked with diseases that manifest during adulthood. Genetic defects that affect mitochondrial function may involve the mitochondrial DNA genome directly (maternal inheritance) or indirectly (Mendelian inheritance) through nuclear-coded mitochondrial proteins. In a growing number of cases, the depletion of, or deletion in, mitochondrial DNA is seen to be secondary to mutation of key nuclear-coded mitochondrial proteins that affect mitochondrial DNA replication, expression, or stability. These defects of intergenomic regulation may disrupt the normal cross-talk or structural compartmentation of signals that ultimately regulate mitochondrial DNA integrity and copy number, leading to depletion of mitochondrial DNA.  相似文献   

8.
Hypervariable polymorphic patterns were detected with M13 phage DNA as a probe in genomic DNA of organisms belonging to different taxonomic groups including animals (vertebrates and invertebrates), plants and microorganisms. Individual-specific restriction pattern analysis (DNA fingerprinting) with this probe proved to be useful for individual identification, analysis of somatic stability and paternity testing in man. The nuclear type of inheritance indicates that the hypervariable DNA regions in question are located in the chromosomes, not in the mitochondrial DNA. The data obtained also demonstrate a potential range of M13 DNA applications as a probe for DNA fingerprinting of animals, plants and microorganisms, particularly for the determination of inbred lines, identification of bacterial strains and establishing stock, variety and strain distinctions.  相似文献   

9.
The restriction patterns of two chloroplast fragments and one mitochondrial DNA fragment, amplified by PCR with universal primers, were studied to determine the mode of inheritance of these organelles in 143 progeny of five intraspecific crosses in pedunculate oak (Quercus robur L.). The results indicate that both genomes are maternally inherited, an observation which agrees with the commonly observed pattern of inheritance in angiosperms. They confirm that both chloroplast DNA and mitochondrial DNA can be used as a source of seed-specific markers for the study of the geographic structure of oaks. This is the first report of organelle inheritance within the Fagaceae, an important and widespread tree family.  相似文献   

10.
Molecular polymorphism and phenotypic variation in Aspergillus carbonarius   总被引:1,自引:0,他引:1  
Thirteen collection strains and field isolates of Aspergillus carbonarius were examined by using various genotypic and phenotypic approaches. Restriction fragment length polymorphism analysis of the ribosomal RNA gene cluster and the mitochondrial DNA of the strains revealed only slight variations, except for one field isolate (IN7), which exhibited completely different ribosomal RNA gene cluster and mitochondrial DNA patterns. The mitochondrial DNAs of these strains were found to be much larger (45 to 57 kb) than those found earlier in the A. niger aggregate. Strain-specific characters could be detected by the random amplified polymorphic DNA technique. Isoenzyme analysis and examination of carbon source utilisation patterns of the strains also revealed some intraspecific variability, though much smaller than that observed by using DNA-based techniques. The dendrograms constructed based on genotypic and phenotypic data suggest that strain IN7 might represent a new subspecies of A. carbonarius.Abbreviations kb kilobase pair - mtDNA mitochondrial DNA - RAPD random amplified polymorphic DNA - rDNA ribosomal RNA gene cluster - RFLP restriction fragment length polymorphisms  相似文献   

11.
We have isolated the total cellular DNA from the cultured diploid fibroblasts of a six-member, three-generation human family. Using a specific radioactive probe for mitochondrial (mt) sequences we have identified new polymorphic variants in this family for the Hhal restriction endonuclease cleavage pattern of the mtDNA. The inheritance of these cleavage patterns verifies the maternal inheritance of mtDNA through all three generations.  相似文献   

12.
In a recent Perspective, Stahlhut et al. (2012) argued that potential Wolbachia-induced effects on inheritance patterns of mitochondrial DNA do not significantly affect DNA barcoding efforts. Since this hypothesis can be readily tested, we suggest to do so by including multiple, nuclear markers in DNA barcoding studies.  相似文献   

13.
Paternal inheritance of mitochondria in Chlamydomonas   总被引:1,自引:0,他引:1  
To analyze mitochondrial DNA (mtDNA) inheritance, differences in mtDNA between Chlamydomonas reinhardtii and Chlamydomonas smithii, respiration deficiency and antibiotic resistance were used to distinguish mtDNA origins. The analyses indicated paternal inheritance. However, these experiments raised questions regarding whether paternal inheritance occurred normally. Mitochondrial nucleoids were observed in living zygotes from mating until 3 days after mating and then until progeny formation. However, selective disappearance of nucleoids was not observed. Subsequently, experimental serial backcrosses between the two strains demonstrated strict paternal inheritance. The fate of mt+ and mt− mtDNA was followed using the differences in mtDNA between the two strains. The slow elimination of mt+ mtDNA through zygote maturation in darkness was observed, and later the disappearance of mt+ mtDNA was observed at the beginning of meiosis. To explain the different fates of mtDNA, methylation status was investigated; however, no methylation was detected. Variously constructed diploid cells showed biparental inheritance. Thus, when the mating process occurs normally, paternal inheritance occurs. Mutations disrupting mtDNA inheritance have not yet been isolated. Mutations that disrupt maternal inheritance of chloroplast DNA (cpDNA) do not disrupt inheritance of mtDNA. The genes responsible for mtDNA inheritance are different from those of chloroplasts.  相似文献   

14.
Jianping Xu 《Génome》2005,48(6):951-958
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.  相似文献   

15.
张姝  贺瑞红  赵宇翔  张永杰 《菌物学报》2018,37(8):1035-1043
本研究的目的是建立一种快速确定蛹虫草菌株线粒体基因型的技术体系,并探讨蛹虫草连续传代培养后线粒体的遗传稳定性。从已知线粒体基因组的蛹虫草菌株中扩增线粒体内含子位点,将扩增产物混合并制作出两套DNA分子量标准,即在8个内含子位点分别具有内含子的8条扩增条带组成的M-I和在6个内含子位点分别缺失内含子的6条扩增条带组成的M-II。从待检测的蛹虫草菌株(包括3个已知和2个未知线粒体基因组的菌株)中扩增同样的(假定)内含子位点,然后通过琼脂糖凝胶电泳分别与制备好的两个DNA分子量标准进行比较,能够准确判断蛹虫草菌株的线粒体内含子分布模式,从而验证了所构建的线粒体基因型快速检测体系的有效性。选择10个蛹虫草组织分离菌株和8个单分生孢子菌株连续转接培养15代,没有发现线粒体内含子分布模式发生改变。本研究成功构建了快速检测蛹虫草线粒体基因型的技术体系,并发现蛹虫草线粒体具有很高的遗传稳定性,为开展蛹虫草线粒体遗传规律的研究奠定了基础。  相似文献   

16.
Physical and functional maps of mitochondrial DNAs of Aspergillus niger strains representing different mitochondrial DNA RFLP patterns were constructed and compared. In spite of the high similarity in the organisation of mitochondrial DNAs among examined strains, differences could be easily recognised by applying molecular markers, such as the different intron content of the cox1 genes, the sequence of the intergenic regions between the Met- and His-tRNA genes and downstream of the tRNA-Gly gene. Intraspecific mitochondrial transfers between the heterokaryon incompatible mitochondrial oligomycin-resistant A. niger strain, as the donor, and other A. niger-sensitive strains bearing different RFLP patterns resulted in oligomycin-resistant progeny possessing either rearranged or unchanged donor mitochondrial DNA and recipient nuclei. Since the intergenic marker sequences of mitochondrial DNAs turned out to be identical in the donor and the progeny, it can be assumed that the oligomycin-resistant progeny inherit the mitochondrial DNA of the donor strain; this may either remain unchanged or may be modified by a mobile intron of the cox1 gene of the recipient mitochondria.  相似文献   

17.
Summary Mitochondrial DNA was isolated from fertile and cytoplasmic male sterile lines of rice. Restriction analysis showed specific modifications in the male sterile cytoplasm. In addition to the major mitochondrial DNA, three small plasmid-like DNA molecules were detected by agarose gel electrophoresis in both cytoplasms. An additional molecule was specifically found in the sterile cytoplasm. These mitochondrial DNA modifications support the hypothesis of the mitochondrial inheritance of the cytoplasmic male sterility in rice.  相似文献   

18.
19.
The two-spot ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae) is host to four different intracellular maternally inherited bacteria that kill male hosts during embryogenesis: one each of the genus Rickettsia (alpha-Proteobacteria) and Spiroplasma (Mollicutes) and two distinct strains of Wolbachia (alpha-Proteobacteria). The history of infection with these male-killers was explored using host mitochondrial DNA, which is linked with the bacteria due to joint maternal inheritance. Two variable regions, 610 bp of cytochrome oxidase subunit I and 563 bp of NADH dehydrogenase subunit 5, were isolated from 52 A. bipunctata with known infection status and different geographic origin from across Eurasia. Two outgroup taxa were also considered. DNA sequence analysis revealed that the distribution of mitochondrial haplotypes is not associated with geography. Rather, it correlates with infection status, confirming linkage disequilibrium between mitochondria and bacteria. The data strongly suggest that the Rickettsia male-killer invaded the host earlier than the other taxa. Further, the male-killing Spiroplasma is indicated to have undergone a recent and extensive spread through host populations. In general, male-killing in A. bipunctata seems to represent a highly dynamic system, which should prove useful in future studies on the evolutionary dynamics of this peculiar type of symbiont-host association.  相似文献   

20.
Yan Z  Xu J 《Genetics》2003,163(4):1315-1325
Previous studies demonstrated that mitochondrial DNA (mtDNA) was uniparentally transmitted in laboratory crosses of the pathogenic yeast Cryptococcus neoformans. To begin understanding the mechanisms, this study examined the potential role of the mating-type locus on mtDNA inheritance in C. neoformans. Using existing isogenic strains (JEC20 and JEC21) that differed only at the mating-type locus and a clinical strain (CDC46) that possessed a mitochondrial genotype different from JEC20 and JEC21, we constructed strains that differed only in mating type and mitochondrial genotype. These strains were then crossed to produce hyphae and sexual spores. Among the 206 single spores analyzed from six crosses, all but one inherited mtDNA from the MATa parents. Analyses of mating-type alleles and mtDNA genotypes of natural hybrids from clinical and natural samples were consistent with the hypothesis that mtDNA is inherited from the MATa parent in C. neoformans. To distinguish two potential mechanisms, we obtained a pair of isogenic strains with different mating-type alleles, mtDNA types, and auxotrophic markers. Diploid cells from mating between these two strains were selected and 29 independent colonies were genotyped. These cells did not go through the hyphal stage or the meiotic process. All 29 colonies contained mtDNA from the MATa parent. Because no filamentation, meiosis, or spore formation was involved in generating these diploid cells, our results suggest a selective elimination of mtDNA from the MATalpha parent soon after mating. To our knowledge, this is the first demonstration that mating type controls mtDNA inheritance in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号