首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63, 581-592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.  相似文献   

2.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

3.
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

4.
This paper proposes a method for modeling longitudinal binary data when nonresponse depends on unobserved responses. The proposed method presumes that the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates, and can accommodate both monotone and non-monotone missingness. The approach involves a marginally specified pattern-mixture model that directly parameterizes both the marginal means at each occasion and the dependence of each response on indicators of nonresponse pattern. This formulation readily incorporates a variety of nonresponse processes assumed within a sensitivity analysis. Once identifying restrictions have been made, estimation of model parameters proceeds via solution to a set of modified generalized estimating equations. The proposed method provides an alternative to standard selection and pattern-mixture modeling frameworks, while featuring certain advantages of each. The paper concludes with application of the method to data from a contraceptive clinical trial with substantial dropout.  相似文献   

5.
This article presents a likelihood-based method for handling nonignorable dropout in longitudinal studies with binary responses. The methodology developed is appropriate when the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates. A "hybrid" model is formulated, which is designed to retain advantageous features of the selection and pattern-mixture model approaches. This formulation accommodates a variety of assumed forms of nonignorable dropout, while maintaining transparency of the constraints required for identifying the overall model. Once appropriate identifying constraints have been imposed, likelihood-based estimation is conducted via the EM algorithm. The article concludes by applying the approach to data from a randomized clinical trial comparing two doses of a contraceptive.  相似文献   

6.
Yi GY  He W 《Biometrics》2009,65(2):618-625
Summary .  Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined.  相似文献   

7.
8.
Summary .  Longitudinal studies often generate incomplete response patterns according to a missing not at random mechanism. Shared parameter models provide an appealing framework for the joint modelling of the measurement and missingness processes, especially in the nonmonotone missingness case, and assume a set of random effects to induce the interdependence. Parametric assumptions are typically made for the random effects distribution, violation of which leads to model misspecification with a potential effect on the parameter estimates and standard errors. In this article we avoid any parametric assumption for the random effects distribution and leave it completely unspecified. The estimation of the model is then made using a semi-parametric maximum likelihood method. Our proposal is illustrated on a randomized longitudinal study on patients with rheumatoid arthritis exhibiting nonmonotone missingness.  相似文献   

9.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

10.
Albert PS 《Biometrics》2000,56(2):602-608
Binary longitudinal data are often collected in clinical trials when interest is on assessing the effect of a treatment over time. Our application is a recent study of opiate addiction that examined the effect of a new treatment on repeated urine tests to assess opiate use over an extended follow-up. Drug addiction is episodic, and a new treatment may affect various features of the opiate-use process such as the proportion of positive urine tests over follow-up and the time to the first occurrence of a positive test. Complications in this trial were the large amounts of dropout and intermittent missing data and the large number of observations on each subject. We develop a transitional model for longitudinal binary data subject to nonignorable missing data and propose an EM algorithm for parameter estimation. We use the transitional model to derive summary measures of the opiate-use process that can be compared across treatment groups to assess treatment effect. Through analyses and simulations, we show the importance of properly accounting for the missing data mechanism when assessing the treatment effect in our example.  相似文献   

11.
In longitudinal studies investigators frequently have to assess and address potential biases introduced by missing data. New methods are proposed for modeling longitudinal categorical data with nonignorable dropout using marginalized transition models and shared random effects models. Random effects are introduced for both serial dependence of outcomes and nonignorable missingness. Fisher‐scoring and Quasi–Newton algorithms are developed for parameter estimation. Methods are illustrated with a real dataset.  相似文献   

12.
Most models for incomplete data are formulated within the selection model framework. This paper studies similarities and differences of modeling incomplete data within both selection and pattern-mixture settings. The focus is on missing at random mechanisms and on categorical data. Point and interval estimation is discussed. A comparison of both approaches is done on side effects in a psychiatric study.  相似文献   

13.
Heagerty PJ 《Biometrics》2002,58(2):342-351
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series.  相似文献   

14.
Cook RJ  Zeng L  Yi GY 《Biometrics》2004,60(3):820-828
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior.  相似文献   

15.
16.
Wang YG  Zhao Y 《Biometrics》2007,63(3):681-689
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.  相似文献   

17.
Longitudinal data usually consist of a number of short time series. A group of subjects or groups of subjects are followed over time and observations are often taken at unequally spaced time points, and may be at different times for different subjects. When the errors and random effects are Gaussian, the likelihood of these unbalanced linear mixed models can be directly calculated, and nonlinear optimization used to obtain maximum likelihood estimates of the fixed regression coefficients and parameters in the variance components. For binary longitudinal data, a two state, non-homogeneous continuous time Markov process approach is used to model serial correlation within subjects. Formulating the model as a continuous time Markov process allows the observations to be equally or unequally spaced. Fixed and time varying covariates can be included in the model, and the continuous time model allows the estimation of the odds ratio for an exposure variable based on the steady state distribution. Exact likelihoods can be calculated. The initial probability distribution on the first observation on each subject is estimated using logistic regression that can involve covariates, and this estimation is embedded in the overall estimation. These models are applied to an intervention study designed to reduce children's sun exposure.  相似文献   

18.
When two binary responses are measured for each study subject across time, it may be of interest to model how the bivariate associations and marginal univariate risks involving the two responses change across time. To achieve such a goal, marginal models with bivariate log odds ratio and univariate logit components are extended to include random effects for all components. Specifically, separate normal random effects are specified on the log odds ratio scale for bivariate responses and on the logit scale for univariate responses. Assuming conditional independence given the random effects facilitates the modeling of bivariate associations across time with missing at random incomplete data. We fit the model to a dataset for which such structures are feasible: a longitudinal randomized trial of a cardiovascular educational program where the responses of interest are change in hypertension and hypercholestemia status. The proposed model is compared to a naive bivariate model that assumes independence between time points and univariate mixed effects logit models.  相似文献   

19.
Roy J 《Biometrics》2003,59(4):829-836
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.  相似文献   

20.
Chen H  Geng Z  Zhou XH 《Biometrics》2009,65(3):675-682
Summary .  In this article, we first study parameter identifiability in randomized clinical trials with noncompliance and missing outcomes. We show that under certain conditions the parameters of interest are identifiable even under different types of completely nonignorable missing data: that is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and moment estimators and evaluate their finite-sample properties in simulation studies in terms of bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable missing-data model has an important impact on the estimated complier average causal effect (CACE) parameter. Our new method provides some new and useful alternative nonignorable missing-data models over the existing latent ignorable model, which guarantees parameter identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and missing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号