首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Crypthecodinium cohnii -like heterotrophic dinoflagellate preys on the cells of the red microalga Porphyridium sp. UTEX 637, and not on other microalgae. The dinoflagellate contains enzymes that degrade the cell wall complex of this species of alga and not that of other red microalgae. The cells of the red microalgae are encapsulated within a cell wall complex composed of about 10 sugars, sulfate, and proteins. We previously hypothesized that the dinoflagellate recognizes the cell wall of this alga. In this study, we have shown that the biorecognition site is the 66-kDa glycoprotein in the algal cell wall complex. The methodology used in this study was based on changing the algal cell wall composition and examining the prey and chemosensory response of the dinoflagellate. The dinoflagellate was not attracted to the cell wall of other red microalgae, which are similar to that of Porphyridium sp., or to sugars composing its cell wall. However, the dinoflagellate preyed on and was attracted to Porphyridium sp. mutants (DCB resistant) having modified cell wall polysaccharide composition, probably because the 66-kDa cell wall glycoprotein was not changed. The dinoflagellate did not respond chemotactically to enzymatically degraded cell wall complex. Treatment of the cell wall complex with antiserum to the 66-kDa glycoprotein or with the lectin concanavalin A (con A), which binds specifically to α-d-mannosyl and α-d-glucosyl residues, did not affect the chemotactic attraction. However, prey by the dinoflagellate was prevented when the algal cells were blocked with antiserum specific to the 66-kDa glycoprotein or with con A. These latter results provide direct proof that the 66-kDa cell wall glycoprotein isthe recognition site and prey-prevention results from the blocking of this site on the cell wall.  相似文献   

2.
The flagellar attachment zone (FAZ) is an adhesion region of Trypanosoma cruzi epimastigote forms where the flagellum emerges from the flagellar pocket and remains attached to the cell body. This region shows a junctional complex which is formed by a linear series of apposed macular structures that are separated by amorphous material and clusters of intramembranous particles. Two protein groups appear to be important in the FAZ region: a membrane glycoprotein of 72kDa and several high molecular weight proteins. To gain a better understanding of the FAZ region, we compared wild-type Y strain T. cruzi epimastigotes with a mutant cell in which the 72-kDa surface glycoprotein (Gp72), involved in cell body-flagellum adhesion, had been deleted by target gene replacement. Using immunofluorescence confocal microscopy and electron microscopy techniques to analyze the FAZ region the results suggest that, in the absence of Gp72, other proteins involved in the formation of FAZ remain concentrated in the flagellar pocket region. The analysis of a 3-D reconstruction model of wild-type epimastigotes showed that the endoplasmic reticulum and mitochondrion are in intimate association with FAZ, in contrast to the null mutant cells where the endoplasmic reticulum was not visualized.  相似文献   

3.
Morphological differentiation has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. We evaluated in vitro and in vivo the dimorphism from mycelial to yeast-phase of Sporothrix schenckii, Blastomyces dermatitidis and Paracoccidioides brasiliensis isolates, two strains for each species, preserved in mineral oil. S. schenckii strains showed typical micromorphology at 25 degrees C but one strain was unable to complete the dimorphic process in vitro. After in vivo passage through mice the strains had the ability to turn into yeast-like cells and to form colonies on brain-heart infusion medium at 36 degrees C. B. dermatitidis strains grew as dirty white to brownish membranous colonies at 25 degrees C and their micromorphology showed thin filaments with single hyaline conidia. At 36 degrees C the colonies did not differ from those grown at 25 degrees C, but produced a transitional micromorphology. P. brasiliensis strains grew as cream-colored cerebriform colonies at 25 degrees C showing a transitional morphology. B. dermatitidis and P. brasiliensis strains did not turn into yeast-like cells in vivo. The present results demonstrate that B. dermatitidis and P. brasiliensis strains were unable to complete the dimorphic process even after in vivo passage, in contrast to the S. schenckii strain.  相似文献   

4.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Tang Jun  Wu Shupin  Bai Juan  Sun Daye 《Planta》1996,198(4):510-516
A 21-kDa calmodulin (CaM)-binding protein and a 19-kDa calmodulin-binding protein were detected in 0.1 M CaCl2 extracts of Angelica dahurica L. suspension-cultured cells and carrot (Daucus carota L.) suspension-cultured cells, respectively, using a biotinylated cauliflower CaM gel-overlay technique in the presence of 1 mM Ca2+. No bands, or very weak bands, were shown on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels overlayed with biotinylated cauliflower CaM when 1 mM Ca2+ was replaced by 5 mM EGTA, indicating that the binding of these two CaM-binding proteins to CaM was dependent on Ca2+. Less 21-kDa CaM-binding protein was found in culture medium of Angelica dahurica suspension cells; however, a 21-kDa protein was abundant in the cell wall. We believe that the 21-kDa CaM-binding protein is mainly in the cell wall of Angelica dahurica. Based on its reaction with periodic acid-Schiff (PAS) reagent, this 21-kDa protein would appear to be a glycoprotein. The 21-kDa CaM-binding protein was purified by a procedure including Sephadex G-100 gel filtration and CM-Sepharose cation-exchange column chromatography. The purity reached 91% according to gel scanning. The purified 21-kDa CaM-binding protein inhibited the activity of CaM-dependent NAD kinase and the degree of inhibition increased with augmentation of the 21-kDa protein, which appeared to be the typical characteristic of CaM-binding protein.  相似文献   

6.
Gp170 (also known as P-glycoprotein) is a transmembrane glycoprotein which is overexpressed in multidrug-resistant tumor cells and is also found in the apical plasma membrane domain of several normal human and animal tissues. Gp170 has been postulated to function as an energy-dependent efflux pump for cytotoxic drugs. In rat liver, Gp170 is restricted to the bile canalicular domain of the plasma membrane. Canalicular membrane vesicles (CMV), but not sinusoidal membrane vesicles, contained a approximately 160-kDa protein which reacts with anti-Gp170 monoclonal antibody and manifest ATP-dependent [3H]daunomycin transport which is temperature dependent, osmotically sensitive, and saturable. Among several nucleotides, ATP was a potent stimulator of transport whereas non- or slowly hydrolyzable analogues (adenosin-5-O-(3-thiotriphosphate, adenyl-5-yl-imidodiphosphate) were ineffective. ATP-dependent daunomycin transport was inhibited by cytotoxic drugs (vinblastine, vincristine, and adriamycin) and other drugs, such as verapamil and quinidine, which restore anti-cancer drug sensitivity in resistant cells. Inside-out CMV were separated from right side-out CMV by antibody-induced affinity density perturbation. Only inside-out CMV manifested ATP-dependent daunomycin transport. These results suggest that Gp170 is an ATP-dependent efflux pump which is responsible for the undirectional, energy-dependent transport of daunomycin and other drugs by rat liver into the bile.  相似文献   

7.
Komine Y  Eggink LL  Park H  Hoober JK 《Planta》2000,210(6):897-905
The alga Chlamydomonas reinhardtii contains cytoplasmic vacuoles that are often filled with a dense granule that is released from the cell by exocytosis. Purified granules contained polyphosphate, complexed with calcium and magnesium, as the predominant inorganic components. Antiserum was raised against the major 70-kDa protein in granules purified from wall-deficient (cw15) mutants, which reacted on immunoblots with larger glycoprotein complexes in purified cell wall fractions from wild-type cells. Confocal fluorescence microscopy detected binding of these antibodies predominantly at the periphery of wall-containing C. reinhardtiiy1 cells but primarily to loci in the interior of cells of the cw15 strain. Immunoelectron microscopy demonstrated that the 70-kDa protein was localized in vacuolar granules and the trans-Golgi network in sections of cw15 cells but not in the cytosol or chloroplast. Treatment of cells with a dye, fluorescent in its protonated form, indicated that the pH within vacuoles was lower than that in the cytosol, which suggested that the vacuoles are similar to lysosomes. Thus, the vacuoles may serve a dual function to provide an environment for degradation within the cell and also serve as a vehicle for secretion of specific proteins. Received: 29 September 1999 / Accepted: 20 November 1999  相似文献   

8.
Eight monoclonal antibodies, all IgG2a, which recognize a 180/90-kDa glycoprotein similar in properties to the receptor for alpha 2-macroglobulin of mouse embryo 3T3 cell plasma membranes, have been tested for their effect on the binding and uptake of alpha 2-macroglobulin by live cells. One antibody directly inhibited binding of 125I-alpha 2-macroglobulin under conditions in which 125I-transferrin binding to the transferrin receptor was unaffected. Another monoclonal antibody decreased alpha 2-macroglobulin binding when preincubated with cells at 37 degrees C. This antibody was also capable of specifically binding to ligand-receptor complexes formed by preincubating 125I-alpha 2-macroglobulin with detergent extracts of Swiss 3T3 cells. Immunoelectron microscopy showed that the 180/90-kDa glycoprotein was localized in coated pits of the cell surface and in intracellular endocytic vesicles (receptosomes/endosomes). The data suggest that the 180/90-kDa glycoprotein is a component of the receptor for alpha 2-macroglobulin.  相似文献   

9.
R G Garrison  K S Boyd 《Sabouraudia》1975,13(2):174-184
Within 48h following the induction of mycelial to yeast-like phase conversion of Histoplasma farcininosum, randomly occurring hyphal cells were observed to contain multiple nuclei and markedly increased numbers of mitochondria. Yeast-like cells arose as buds from swollen tips of terminal hyphae, as sessile buds along the hyphae, and as buds from chlamydospores. Yeast-like cells were characterized by the presence of numerous buds over the surface of the mother cell. Bud scars were evident in the cell wall of the mother cell following abscission of the bud cell. Little similarity was noted between the fine structure of yeast-like H. farciminosum and that reported for H. capsulatum. The yeast-like cells of H. frciminosum underwent rapid transformation to the mycelial phase at 25 degrees C. The hyphal cell wall originated from the inner layer of cell wall of the yeast-like form. The cytoplasm of the hyphal cell usually contained a single nucleus, scattered mitochondria and occasional lipid storage bodies. Occasionally, Woronin bodies were observed at the septal pore.  相似文献   

10.
The first contact a virus makes with cells is an important determinant of its tropism. Murid Herpesvirus-4 (MuHV-4) is highly dependent on glycosaminoglycans (GAGs) for cell binding. Its first contact is therefore likely to involve a GAG-binding virion glycoprotein. We have previously identified two such proteins, gp70 and gp150. Gp70 binds strongly to GAGs. However, deleting it makes little difference to MuHV-4 cell binding or GAG-dependence. Deleting gp150, by contrast, frees MuHV-4 from GAG dependence. This implies that GAGs normally displace gp150 to allow GAG-independent cell binding. But the gp150 GAG interaction is weak, and so would seem unlikely to make an effective first contact. Since neither gp70 nor gp150 matches the expected profile of a first contact glycoprotein, our understanding of MuHV-4 GAG interactions must be incomplete. Here we relate the seemingly disconnected gp70 and gp150 GAG interactions by showing that the MuHV-4 gH/gL also binds to GAGs. gH/gL-blocking and gp70-blocking antibodies individually had little effect on cell binding, but together were strongly inhibitory. Thus, there was redundancy in GAG binding between gp70 and gH/gL. Gp150-deficient MuHV-4 largely resisted blocks to gp70 and gH/gL binding, consistent with its GAG independence. The failure of wild-type MuHV-4 to do the same argues that gp150 is normally engaged only down-stream of gp70 or gH/gL. MuHV-4 GAG dependence is consequently two-fold: gp70 or gH/gL binding provides virions with a vital first foothold, and gp150 is then engaged to reveal GAG-independent binding.  相似文献   

11.
Trophoblast-derived interferon tau (IFNtau) acts on the endometrium to increase secretion of several proteins during the pregnancy recognition period in ruminants. One of these is a 70-kDa acidic protein that has not been identified. Our hypothesis was that the 70-kDa acidic protein is osteopontin (OPN). OPN is an acidic glycoprotein that fragments upon freezing and thawing or treatment with proteases including thrombin. OPN contains a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence that binds to cell surface integrins to promote cell-cell attachment and cell spreading. Using antisera to recombinant human OPN, both 70-kDa and 45-kDa proteins were identified in uterine flushings from pregnant ewes by Western blotting. A clone containing the entire ovine OPN cDNA coding sequence was isolated by screening a Day 15 pregnant ovine endometrial cDNA library with a partial ovine OPN cDNA. In pregnant ewes, steady-state levels of OPN endometrial mRNA increased (P < 0. 01) after Day 17. In both cyclic and pregnant ewes, in situ hybridization analysis showed that OPN mRNA was localized on unidentified immune cells within the stratum compactum of the endometrium. In pregnant ewes, OPN mRNA was also expressed by the glandular epithelium. Results suggest that progesterone and/or IFNtau induce expression and secretion of OPN by uterine glands during the periimplantation period and that OPN may induce adhesion between luminal epithelium and trophectoderm to facilitate superficial implantation.  相似文献   

12.
We investigated multiple forms of rabies virus matrix (M) protein. Under non-reducing electrophoretic conditions, we detected, in addition to major bands of monomer forms (23- and 24-kDa) of M protein, an M antigen-positive slow-migrating minor band (about 54 kDa) in both the virion and infected cells. Relative contents of the 54-kDa and monomer components in the virion were about 20-30% and 70-80% of the whole M protein, respectively, while the content of the 54-kDa component was smaller (about 10-20% of the total M protein) in the cell than in the virion. The 54-kDa components could be extracted from the infected cells with sodium deoxycholate, but they were quite resistant to extraction with 1% nonionic detergents by which most monomer components were solubilized. The 54-kDa component was precipitated more efficiently than the monomer by a monoclonal antibody (mAb; #3-9-16), which recognized a linear epitope located at the N-terminal of the M protein. The mAb #3-9-16 coprecipitated the viral glycoprotein (G), which was demonstrated to be due to strong association between the G and 54-kDa component of the M protein. Monomers and the 54-kDa polypeptide migrated to the same isoelectric point (pI) in twodimensional (2-D) gel electrophoresis, implicating that the 54-kDa component was composed of component(s) of the same pI as that of the M protein monomers. From these results, we conclude that the M antigen-positive 54-kDa polypeptide is a homodimer of M protein, taking an N-terminal-exposed conformation, and is strongly associated with the viral glycoprotein. Possible association with a membrane microdomain of the cell will be discussed.  相似文献   

13.
Retrovirus infection is initiated by the binding of virus envelope glycoprotein to a receptor molecule present on cell membranes. To characterize a receptor for feline leukemia virus (FeLV), we extensively purified the viral envelope glycoprotein, gp70, from culture supernatants of FeLV-61E (subgroup A)-infected cells by immunoaffinity chromatography. Binding of purified 125I-labeled gp70 to the feline T-cell line 3201 was specific and saturable, and Scatchard analysis revealed a single class of receptor binding sites with an average number of 1.6 x 10(5) receptors per cell and an apparent affinity constant (Ka) of 1.15 x 10(9) M-1. Cross-linking experiments identified a putative gp70-receptor complex of 135 to 140 kDa. Similarly, coprecipitation of 125I-labeled cell surface proteins with purified gp70 and a neutralizing but noninterfering anti-gp70 monoclonal antibody revealed a single cell surface protein of approximately 70 kDa. These results indicate that FeLV-A binds to feline T cells via a 70-kDa cell surface protein, its presumptive receptor.  相似文献   

14.
Biosynthetic experiments with cultured bovine retinal endothelial cells have identified a glycoprotein of Mr 47,000 (Gp47) as a major component secreted into the medium. Gp47 is a non-collagenous glycoprotein with a pI of 4.6-5.5, which does not bind to either gelatin-Sepharose or heparin-Sepharose but is retained by concanavalin A-Sepharose. The Mr of this species decreases to approx. 42,000 in the presence of tunicamycin, indicating that it contains asparagine-linked oligosaccharides. A second protein of Mr 47,000 (P47) is present in the cell layer/matrix of these cultured cells. The electrophoretic mobility of P47 remains unaltered when synthesized in the presence of tunicamycin. Peptide-mapping experiments using N-chlorosuccinimide and Staphylococcus aureus V8 proteinase demonstrate that Gp47 and P47 are distinct proteins, and are not related to colligin, a membrane-bound collagen-receptor protein of similar size, or to SPARC, a major secreted product of parietal endodermal cells and sparse cultures of aortic endothelial cells.  相似文献   

15.
Epithelial surface antigen (ESA) is a glycoprotein with a distribution in vivo that is largely confined to human epithelial cells. Previous studies using a mouse monoclonal antibody (MH99) detecting ESA had shown that the antigen immunoprecipitated from most epithelial cancer cell lines has two chains (38,000 and 32,000 Da) when separated under reducing conditions and only one (38,000 Da) under nonreducing conditions. We now show that the 38-kDa band observed under nonreducing conditions consists of two species, one a 38-kDa single chain protein and the other a disulfide-linked dimer consisting of the 32-kDa chain bonded to a previously unrecognized 6-kDa chain. Pulse-chase studies have shown that ESA is synthesized as a 34-kDa protein which is glycosylated to a 38-kDa glycoprotein containing both high mannose and complex carbohydrate chains. With longer chase periods, a 32-kDa species also appears. Peptide mapping, together with the pulse-chase data, suggests that the 32- and 6-kDa species are formed from the 38-kDa protein, probably by limited proteolysis. Epithelial cell lines differ in their ratios of 38/32-kDa species, some cell lines having only the 38-kDa form. Incubation of radiolabeled extracts of cells having only the 38-kDa protein with unlabeled extracts of the other cell types resulted in progressive conversion of the 38-kDa species to the 32- and 6-kDa forms. Only cell lines expressing both forms of ESA are able to carry out this cleavage of the 38-kDa protein. This is a novel mechanism for generating cell-type related differences in cell surface glycoprotein expression. Finally, sequential immunoprecipitation experiments showed that the antigen detected by Ab MH99 is closely related or identical to that detected by Ab 17-1A, a previously described colon cancer antigen.  相似文献   

16.
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins.  相似文献   

18.
Two different types of oligosaccharides, designated type 1 and 2 carbohydrate residues, are present on the contact site A molecule, an 80-kDa glycoprotein involved in the formation of EDTA-stable cell adhesion during cell aggregation in Dictyostelium discoideum. The first precursor detected by pulse-chase labeling with [35S]methionine was a 68-kDa glycoprotein carrying type 1 carbohydrate. Conversion of the precursor into the 80-kDa form occurred simultaneously with the addition of type 2 carbohydrate. Tunicamycin inhibited type 1 glycosylation more efficiently than type 2 glycosylation. The first precursor detected in tunicamycin-treated cells by pulse-chase labeling was a 53-kDa protein lacking both carbohydrates, which was converted through addition of type 2 carbohydrate into a 66-kDa final product. Labeling of intact cells indicated that this 66-kDa glycoprotein is transported to the cell surface. Prolonged treatment with tunicamycin resulted in the accumulation within the cells of the 53-kDa precursor with no detectable exposure of this protein on the cell surface. It is concluded that type 1 carbohydrate, which is cotranslationally added in N-glycosidic linkages, is neither required for transport of the protein to the Golgi apparatus nor for type 2 glycosylation or protection of the protein against proteolytic degradation. Incapability of tunicamycin-treated cells of forming EDTA-stable cell contacts suggests a role for type 1 carbohydrate in cell adhesion. Type 2 carbohydrate is added posttranslationally. It is required in the absence of type 1 glycosylation for transport of the protein to the cell surface.  相似文献   

19.
Fetchko M  Huang W  Li Y  Lai ZC 《The EMBO journal》2002,21(5):1074-1083
Cellular signaling activities must be tightly regulated for proper cell fate control and tissue morphogenesis. Here we report that the Drosophila leucine-rich repeat transmembrane glycoprotein Gp150 is required for viability, fertility and development of the eye, wing and sensory organs. In the eye, Gp150 plays a critical role in regulating early ommatidial formation. Gp150 is highly expressed in cells of the morphogenetic furrow (MF) region, where it accumulates exclusively in intracellular vesicles in an endocytosis-independent manner. Loss of gp150 function causes defects in the refinement of photoreceptor R8 cells and recruitment of other cells, which leads to the formation of aberrant ommatidia. Genetic analyses suggest that Gp150 functions to modulate Notch signaling. Consistent with this notion, Gp150 is co-localized with Delta in intracellular vesicles in cells within the MF region and loss of gp150 function causes accumulation of intracellular Delta protein. Therefore, Gp150 might function in intracellular vesicles to modulate Delta-Notch signaling for cell fate control and tissue morphogenesis.  相似文献   

20.
Group C human adenovirus (Ad) serotypes (e.g., Ad2 and Ad5) cause persistent infections in man. One proposed mechanisms to explain human adenovirus persistence is an ineffective CTL response due to reduced cell surface expression of class I MHC Ag on virally infected cells, an effect mediated by the 19-kDa glycoprotein encoded by Ad early region 3 (E3). In the present study, the generality of this phenomenon was tested by analyzing E3 19-kDa glycoprotein down-regulation of cell surface class 1 MHC Ag on a variety of human cell types. With the exception of the Ad5 early region 1 (E1) transformed cell line, 293, Ad2/5 infection of fibroblastic, epithelial, and lymphoid cells did not cause major decreases in surface class I Ag until the terminal stages of infection when cell death is imminent. Furthermore, newly synthesized class I Ag continued to be surface expressed on most cell types at times when infected cells contained large amounts of Ad E3 19-kDa glycoprotein. These data indicate that most types of human cells are resistant to the E3 19-kDa glycoprotein effect, suggesting that virus-specific CTL recognition and lysis of most Ad2/5-infected human cells should not be limited by E3 19-kDa-mediated reduction in class I MHC Ag expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号