首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have analyzed the ability of A165V, V169I/D170N, and P536L mutations to suppress pma1 dominant lethal alleles and found that the P536L mutation is able to suppress the dominant lethality of the pma1-R271T, -D378N, -D378E, and -K474R mutant alleles. Genetic and biochemical analyses of site-directed mutants at Pro-536 suggest that this amino acid may not be essential for function but is important for biogenesis of the ATPase. Proteins encoded by dominant lethal pma1 alleles are retained in the endoplasmic reticulum, thus interfering with transport of wild-type Pma1. Immunofluorescence studies of yeast conditionally expressing revertant alleles show that the mutant enzymes are correctly located at the plasma membrane and do not disturb targeting of the wild-type enzyme. We propose that changes in Pro-536 may influence the folding of the protein encoded by a dominant negative allele so that it is no longer recognized and retained as a misfolded protein by the endoplasmic reticulum.  相似文献   

2.
3.
Recombinant plant plasma membrane H(+)-ATPase has been produced in a yeast expression system comprising a multicopy plasmid and the strong promoter of the yeast PMA1 gene. Western blotting with a specific monoclonal antibody showed that the plant ATPase is one of the major membrane proteins made by the transformed cells, accounting for about 1% of total yeast protein. The plant ATPase synthesized in yeast is fully active. It hydrolyzes ATP, pumps protons, and the reaction cycle involves a phosphorylated intermediate. Phosphorylation is possible from both ATP and Pi. Unlike the situation in plants, however, most of the plant ATPase is not expressed in the yeast plasma membrane. Rather, the enzyme appears to remain trapped at a very early stage of secretory pathway: insertion into the endoplasmic reticulum. This organelle was observed to proliferate in the form of stacked membranes surrounding the yeast nucleus in order to accommodate the large amount of plant ATPase produced. In this location, the plant ATPase can be purified with high yield (70 mg from 1 kg of yeast) from membranes devoid of endogenous yeast plasma membrane H(+)-ATPase. This convenient expression system could be useful for other eukaryotic membrane proteins and ATPases.  相似文献   

4.
The plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae is a prototype for the mutagenic analysis of structure-function relationships in P-type cation pumps. Because a functional H+ pump is required for viability, wild-type ATPase must be maintained in the plasma membrane for normal cell growth. Our expression strategy involves a rapid switch in expression from the wild-type ATPase gene to a mutant allele followed by entrapment of the newly synthesized mutant enzyme in an internal, secretory vesicle pool. The isolated vesicles prove to be ideally suited for the study of the catalytic and transport properties of the ATPase. Work to date has focused on conserved residues in the vicinity of the aspartyl-phosphate reaction intermediate. Substitution of Asp378 with Glu, Ser, or Asn and of Lys379 with Gln prevents normal biogenesis of the mutant ATPase. The more conservative Lys379----Arg mutation was tolerated, but with a sixfold loss of activity and substantial alterations in Km for ATP and Ki for vanadate. Nonconservative replacement of Thr380, Thr382, or Thr384 with Ala led to inactive enzyme, whereas the conservative change to Ser caused a two to threefold reduction in ATP hydrolysis and H(+)-pumping. Taken together, the results are consistent with an essential role for these invariant residues in phosphate-binding and ATP hydrolysis.  相似文献   

5.
Incubation of oat root plasma membrane vesicles in the presence of ATP with trypsin or chymotrypsin increased the rate of ATP hydrolysis and ATP-dependent proton pumping by the plasma membrane H(+)-ATPase. Proton pumping was stimulated more than 200%, whereas ATP hydrolytic activity was stimulated about 30%. The Km (ATP) for both proton pumping and ATP hydrolysis was lowered from about 0.3 mM to below 0.1 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of trypsin-treated plasma membranes revealed a decrease in a 100-kDa band and the appearance of a 93-kDa band. Western blot analysis using antibodies against the H(+)-ATPase showed that both of these bands represented the H(+)-ATPase and suggested that a 7-kDa segment was released. Extensive treatment with carboxypeptidase A also activated the H(+)-ATPase indicating that the 7-kDa segment originated from the C terminus.  相似文献   

6.
More than 35 site-directed mutants of the plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae have been constructed and expressed to investigate the function of N- and C-termini and of conserved amino acids. Conserved motif TGES seems to form part of both the catalytic machinery for the hydrolysis of the phosphorylated intermediate and the vanadate binding site. In addition, it is involved in the coupling of ATP hydrolysis to H+ transport. The phosphorylated intermediate is also essential for this coupling, but not for ATP hydrolysis. The aspartate residues of conserved motifs DPPR, TGD and TGDGVND (the last one) seem to form part of the ATP binding site. The positive charge of the conserved motif KGAP is important for the kinase or phosphorylating activity. A conserved proline and a conserved aspartate predicted to have a transmembrane location are essential for activity. The N-terminus contains a conserved acidic region which may be involved in assembly into the plasma membrane. All the hydrophobic stretches at the C-terminus are also required for assembly. The last 11 amino acids constitute a non-essential inhibitory domain involved in regulation of the enzyme by glucose metabolism.  相似文献   

7.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.  相似文献   

8.
The plasma membrane of Schizosaccharomyces pombe contains an H(+)-ATPase similar to the cation transport ATPases of other eukaryotic organisms. The fluorescence excitation and emission spectra of the purified H(+)-ATPase are characteristic of tryptophan residues. pH reduction from 7.5 to 5.7 produces a 4% decrease in fluorescence intensity, while a further reduction to pH 5.0 leads to an increase of fluorescence. A close correlation is observed between the pH dependence of the intrinsic fluorescence and the pH dependence of (i) ATPase activity, (ii) the fluorescence of Tb-formycin triphosphate bound to the active site, and (iii) inhibition by vanadate of ATPase activity. It is proposed that the effect of pH on intrinsic fluorescence reveals the existence of an H+ induced conformational change of the H(+)-ATPase similar to the E1----E2 transition of the other plasma membrane cation transport ATPases.  相似文献   

9.
10.
11.
The highly conserved motif +(534)DPPR of Saccharomyces cerevisiae H(+)-ATPase, located in the putative ATP binding site, has been mutagenized and the resulting 23 mutant genes conditionally expressed in secretory vesicles. Fourteen mutant ATPases (D534A, D534V, D534L, D534N, D534G, D534T, P535A, P535V, P535L, P535G, P535T, P535E, P535K and R537T) failed to reach the secretory vesicles. Of these mutants, nine (D534N, D534T, P535A, P535V, P535L, P535G, P535T, P535E and P535K) were not detected in total cellular membranes, and five (D534A, D534V, D534G, D534L and R537T) were retained at the endoplasmic reticulum and exhibited a dominant lethal phenotype. The remaining mutants (D534E, R537A, R537V, R537L, R537N, R537G, R537E, R537K and R537H) reached the secretory vesicles at levels similar to that of the wild type. Of these, six (R537A, R537V, R537L, R537N, R537G, and R537E) showed severely decreased ATPase activity compared to the wild type enzyme, and three (D534E, R537K and R537H) rendered an enzyme with an altered K(m) for ATP.  相似文献   

12.
Glucose is well known to cause a rapid, reversible activation of the yeast plasma membrane H(+)-ATPase, very likely mediated by phosphorylation of two or more Ser/Thr residues near the C terminus. Recent mutagenesis studies have shown that glucose-dependent activation can be mimicked constitutively by amino acid substitutions in stalk segment 5 (S5), an alpha-helical stretch connecting the catalytic part of the ATPase with transmembrane segment 5 (Miranda, M., Allen, K. E., Pardo, J. P., and Slayman, C. W. (2001) J. Biol. Chem. 276, 22485-22490). In the present work, the fluorescent maleimide Alexa-488 has served as a probe for glucose-dependent changes in the conformation of S5. Experiments were carried out in a "3C" version of the ATPase, from which six of nine native cysteines had been removed by site-directed mutagenesis to eliminate background labeling by Alexa-488. In this construct, three of twelve cysteines introduced at various positions along S5 (A668C, S672C, and D676C) reacted with the Alexa dye in a glucose-independent manner, as shown by fluorescent labeling of the 100 kDa Pma1 polypeptide and by isolation and identification of the corresponding tryptic peptides. Especially significant was the fact that three additional cysteines reacted with Alexa-488 more rapidly (Y689C) or only (V665C and L678C) in plasma membranes from glucose-metabolizing cells. The results support a model in which the S5 alpha-helix undergoes a significant change in conformation to expose positions 665, 678, and 689 during glucose-dependent activation of the ATPase.  相似文献   

13.
A novel system for generating large interior positive membrane potentials in proteoliposomes was used to examine the effects of membrane voltage on reconstituted plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The membrane potential-generating system was dependent upon the lipophilic electron carrier tetracyanoquinodimethane, located within the bilayer, to mediate electron flow from vesicle entrapped ascorbate to external K3Fe(CN)6. Membrane potential formation was followed by the potential-dependent probe oxonol V and was found to rapidly reach a steady-state which lasted at least 90 s. A membrane potential of approximately 254 mV was determined under optimal conditions and ATP hydrolysis by wild-type H(+)-ATPase was inhibited from 34 to 46% under these conditions. In contrast, membrane potential had little effect on pma1-105 mutant enzyme suggesting that it is defective in electrogenic proton translocation. Applied membrane voltage was also found to alter the sensitivity of wild-type enzyme to vanadate at concentrations less than 50 microM. These data suggest a coupling between the charge-transfer and ATP hydrolysis domains and establish a solid basis for future probing of the electrogenic properties of the yeast H(+)-ATPase.  相似文献   

14.
To investigate the mechanism by which fusicoccin (FC) induces the activation of the plasma membrane (PM) H(+)-ATPase, we used phenylarsine oxide (PAO), a known inhibitor of protein tyrosine-phosphatases. PAO was supplied in vivo in the absence or presence of FC to radish (Raphanus sativus L.) seedlings and cultured Arabidopsis cells prior to PM extraction. Treatment with PAO alone caused a slight decrease of PM H(+)-ATPase activity and, in radish, a decrease of PM-associated 14-3-3 proteins. When supplied prior to FC, PAO drastically inhibited FC-induced activation of PM H(+)-ATPase, FC binding to the PM, and the FC-induced increase of the amount of 14-3-3 associated with the PM. On the contrary, PAO was completely ineffective on all of the above-mentioned parameters when supplied after FC. The H(+)-ATPase isolated from PAO-treated Arabidopsis cells maintained the ability to respond to FC if supplied with exogenous, nonphosphorylated 14-3-3 proteins. Altogether, these results are consistent with a model in which the dephosphorylated state of tyrosine residues of a protein(s), such as 14-3-3 protein, is required to permit FC-induced association between the 14-3-3 protein and the PM H(+)-ATPase.  相似文献   

15.
16.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

17.
A series of cytotoxic neutral dicarboxylatoplatinum(II) complexes containing D(+), L(-) or DL-malate dianion and ethylenediamine or 1-ethylimidazole as ligands were examined using ATPase activity assays and the proton extrusion test. ATPase activity assays in vitro on plasma membrane H+-ATPase and on mitochondrial ATPase were carried out. The concentrations of compounds inhibiting enzyme activity to 50 per cent (J50) was determined. The new platinum complexes showed a stronger level of inhibition of both ATPases than the reference carboplatin; this inhibitory activity is related to a stereoisomeric form of anionic platinum ligands. ATPase inhibition in vivo was tested by glucose-stimulated proton extrusion and the influence of platinum compounds on this process in yeast cells was determined. Significant differences in activity levels were observed between those complexes with 1-ethylimidazole and those with ethylenediamine.  相似文献   

18.
To understand protein sorting and quality control in the secretory pathway, we have analyzed intracellular trafficking of the yeast plasma membrane ATPase, Pma1. Pma1 is ideal for such studies because it is a very abundant polytopic membrane protein, and its localization and activity at the plasma membrane are essential for cell viability and growth. We have tested whether the cytoplasmic amino- and carboxyl-terminal domains of Pma1 carry sorting information. As the sole copy of Pma1, mutants truncated at either NH2 or COOH termini are targeted at least partially to the plasma membrane and have catalytic activity to sustain cell viability. The mutants are also delivered to degradative pathways. Strikingly, NH2- and COOH-terminal Pma1 mutants are differentially recognized for degradation at distinct cellular locales. COOH-terminal mutants are recognized for destruction by endoplasmic reticulum-associated degradation. By contrast, NH2-terminal mutants escape detection by endoplasmic reticulum-associated degradation entirely, and undergo endocytosis for vacuolar degradation after apparently normal cell surface targeting. Both NH2- and COOH-terminal mutants are conformationally abnormal, as revealed by increased sensitivity to tryptic cleavage, but are able to assemble to form oligomers. We propose that different quality control mechanisms may assess discrete domains of Pma1 rather than a global conformational state.  相似文献   

19.
The plasma membrane H(+)-ATPase activity from corn seedling roots is shown to be stimulated 3- to 4-fold by the addition of lysophosphatidylcholine (lysoPC). This effect clearly differs from that of other detergents by both the magnitude and the absence of inhibition at higher concentrations. LysoPC decreases the apparent Km for MgATP, increases Vmax of the ATPase reaction but does not change its pH optimum. On the contrary, the acid phosphatase activity associated with plasma membranes is not influenced by lysoPC. A lysoPC stimulation is also demonstrated for the solubilized preparation of the H(+)-ATPase. It is assumed that lysoPC stimulation of the plant plasma membrane H(+)-ATPase is not only due to permeabilization of the vesicles for MgATP, but also to direct action on the enzyme.  相似文献   

20.
In this study, two different epitope tags (HA, c-myc) were introduced near the N terminus of the yeast PMA1 H(+)-ATPase. The resulting proteins were indistinguishable from the wild-type ATPase in their ability to travel through the secretory pathway, as judged by quantitative immunoblotting of isolated secretory vesicles. Furthermore, there were no significant abnormalities in ATPase activity (including K(m) for MgATP, Vmax, pH optimum, and IC50 for inhibition by vanadate) or in ATP-dependent proton pumping. Finally, the epitope-tagged ATPases could support normal growth and displayed the expected activation by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号