首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

2.
Deletion of amino acid residues 370 to 375 (D2) and single alanine substitutions between residues 371 and 375 (FNIGI) of lepidopteran-active Bacillus thuringiensis CryIAb delta-endotoxin were constructed by site-directed mutagenesis techniques. All mutants, except that with the I-to-A change at position 373 (I373A), produced delta-endotoxin as CryIAb and were stable upon activation either by Manduca sexta gut enzymes or by trypsin. Mutants D2, F371A, and G374A lost most of the toxicity (400 times less) for M. sexta larvae, whereas N372A and I375A were only 2 times less toxic than CryIAb. The results of homologous and heterologous competition binding assays to M. sexta midgut brush border membrane vesicles (BBMV) revealed that the binding curves for all mutant toxins were similar to those for the wild-type toxin. However, a significant difference in irreversible binding was observed between the toxic (CryIAb, N372A, and I375A) and less-toxic (D2, F371A, and G374A) proteins. Only 20 to 25% of bound, radiolabeled CryIAb, N372A, and I375A toxins was dissociated from BBMV, whereas about 50 to 55% of the less-toxic mutants, D2, F371A, and G374A, was dissociated from their binding sites by the addition of excess nonlabeled ligand. Voltage clamping experiments provided further evidence that the insecticidal property (inhibition of short-circuit current across the M. sexta midgut) was directly correlated to irreversible interaction of the toxin with the BBMV. We have also shown that CryIAb and mutant toxins recognize 210- and 120-kDa peptides in ligand blotting. Our results imply that mutations in residues 370 to 375 of domain II of CrylAb do not affect overall binding but do affect the irreversible association of the toxin to the midgut columnar epithelial cells of M. sexta.  相似文献   

3.
Membrane-spanning M5 and M6 segments, which play a role in the formation of cation transport sites in H+-, Ca2+-, K+-, Na+-, and other P2-ATPases, are connected by a short extracytoplasmic loop. In the yeast plasma membrane H+-ATPase, which belongs to a family of P2-ATPases, the loop is connected to M5 and M6 through the Asp-714 and Asp-720 residues. In this work, the effect of point amino acid replacements of Asp-714 and Asp-720 by Ala, Val, Asn, and Glu residues on the function of the enzyme was studied. The D714A point mutant possessed activities similar to those of the wild-type enzyme, whereas the replacement of Asp-714 by other amino acid residues disrupted biogenesis and led to a loss of activity. All mutants with substitution of Asp-720 were expressed and possessed relatively high activity. The D720V mutant displayed significantly reduced expression level, activity, H+ transport and its coupling to ATP hydrolysis. Thus, substitutions of Asp-714, except for the D714N mutant, led to significant defects in biogenesis and/or function of the enzyme. The results indicate the important role for the Asp-714 residue in biogenesis, structure stability, and enzyme function.  相似文献   

4.
In a model proposed for the structure of the a-subunit of the Escherichia coli F0F1-ATPase (Howitt, S.M., Gibson, F. and Cox, G.B. (1988) Biochim. Biophys. Acta 936, 74-80), a cluster of charged residues, including one arginine and four aspartic acid residues, lie on the periplasmic side of the membrane. On the cytoplasmic side, three pairs of lysine residues and an arginine residue are present. Site-directed mutagenesis was used to investigate the roles of these residues. It was found that none was directly involved in the proton pore. However, the substitutions of Asp-124 or Asp-44 by asparagine or Arg-140 by glutamine had similar effects in that the membranes from such mutants from which the F1-ATPase was removed were proton-impermeable. A combination of the Asp-44 mutation with either the Asp-124 or Arg-140 mutations in the same strain resulted in complete loss of oxidative phosphorylation. It was tentatively concluded that Asp-124 and Arg-140 form a salt bridge, as did Asp-44 with an unknown residue, and these salt bridges were concerned with the maintenance of correct a-subunit structure. Further support for this conclusion was obtained when second site revertants of a Glu-219 to histidine mutant were found to have either histidine or leucine replacing Arg-140. Thus, the lack of the Asp-124/Arg-140 salt bridge might enable repositioning of the helices of the a-subunit such that His-219 becomes a functional component of the proton pore.  相似文献   

5.
The Fas/tumor necrosis factor (TNF)/TRAIL receptors signal death through a cytoplasmic death domain (DD) containing six alpha-helices with positively charged helix 2 interacting with negatively charged helix 3 of another DD. DD mutation occurs in head/neck and lung cancer (TRAIL receptor KILLER/DR5) and in lpr mice (Fas). We examined the apoptotic potential of known KILLER/DR5 lung tumor-derived mutants (n = 6) and DD mutants (n = 18) generated based on conservation with DR4, Fas, Fas-associated death domain (FADD), and tumor necrosis factor receptor 1 (TNFR1). With the exception of Arg-330 required in Fas or FADD for aggregation or for TNFR1 cytotoxicity, surprisingly major loss-of-function KILLER/DR5 alleles (W325A, L334A (lpr-like), I339A, and W360A) contained hydrophobic residues. Loss-of-function of I339A (highly conserved) has not been reported in DDs. Charged residue mutagenesis revealed the following points. 1) E326A, conserved in DR4, is dispensable for death; the homologous residue is positively charged in Fas, TNFR1, and FADD and is critical for DD interactions. 2) K331A, D336A, E338A, K340A, K343A, and D351A have partial loss-of-function suggesting multiple charges stabilize receptor-adapter interactions. Analysis of the tumor-derived KILLER/DR5 mutants revealed the following. 1) L334F has partial loss-of-function versus L334A, whereas E338K has major loss-of-function versus E338A, examples where alanine and tumor-specific substitutions have divergent phenotypes. 2) Unexpectedly, S324F, E326K, K386N, and D407Y have no loss-of-function with tumor-specific or alanine substitutions. Loss-of-function KILLER/DR5 mutants were deficient in recruitment of FADD and caspase 8 to TRAIL death-inducing signaling complexes. The results reveal determinants within KILLER/DR5 for death signaling and drug design.  相似文献   

6.
Type I restriction enzymes bind to specific DNA sequences but subsequently translocate non-specific DNA past the complex in a reaction coupled to ATP hydrolysis and cleave DNA at any barrier that can halt the translocation process. The restriction subunit of these enzymes, HsdR, contains a cluster of seven amino acid sequence motifs typical of helicase superfamily II, that are believed to be relevant to the ATP-dependent DNA translocation. Alignment of all available HsdR sequences reveals an additional conserved region at the protein N-terminus with a consensus sequence reminiscent of the P-D.(D/E)-X-K catalytic motif of many type II restriction enzymes. To investigate the role of these conserved residues, we have produced mutants of the type IB restriction enzyme Eco AI. We have found that single alanine substitutions at Asp-61, Glu-76 and Lys-78 residues of the HsdR subunit abolished the enzyme's restriction activity but had no effect on its ATPase and DNA translocation activities, suggesting that these residues are part of the active site for DNA cleavage.  相似文献   

7.
Like other AAA proteins, Escherichia coli FtsH, a membrane-bound AAA protease, contains highly conserved aromatic and glycine residues (Phe228 and Gly230) that are predicted to lie in the central pore region of the hexamer. The functions of Phe228 and Gly230 were probed by site-directed mutagenesis. The results of both in vivo and in vitro assays indicate that these conserved pore residues are important for FtsH function and that bulkier, uncharged/apolar residues are essential at position 228. None of the point mutants, F228A, F228E, F228K, or G230A, was able to degrade sigma32, a physiological substrate. The F228A mutant was able to degrade casein, an unfolded substrate, although the other three mutants were not. Mutation of these two pore residues also affected the ATPase activity of FtsH. The F228K and G230A mutations markedly reduced ATPase activity, whereas the F228A mutation caused a more modest decrease in this activity. The F228E mutant was actually more active ATPase. The substrates, sigma32 and casein, stimulated the ATPase activity of wild type FtsH. The ATPase activity of the mutants was no longer stimulated by casein, whereas that of the three Phe228 mutants, but not the G230A mutant, remained sigma32-stimulatable. These results suggest that Phe228 and Gly230 in the predicted pore region of the FtsH hexamer have important roles in proteolysis and its coupling to ATP hydrolysis.  相似文献   

8.
Ferredoxins found in animal mitochondria function in electron transfer from NADPH-dependent ferredoxin reductase (Fd-reductase) to cytochrome P450 enzymes. To identify residues involved in binding of human ferredoxin to its electron transfer partners, neutral amino acids were introduced in a highly conserved acidic region (positions 68-86) by site-directed mutagenesis of the cDNA. Mutant ferredoxins were produced in Escherichia coli, and separate assays were used to determine the effect of substitutions on the capacity of each mutant to bind to Fd-reductase and cytochrome P450scc and to participate in the cholesterol side chain cleavage reaction. Replacements at several positions (mutants D68A, E74Q, and D86A) did not significantly affect activity, suggesting that acidic residues at these positions are not required for binding or electron transfer interactions. In contrast, substitutions at positions 76 and 79 (D76N and D79A) caused dramatic decreases in activity and in the affinity of ferredoxin for both Fd-reductase and P450scc; this suggests that the binding sites on ferredoxin for its redox partners overlap. Other substitutions (mutants D72A, D72N, E73A, E73Q, and D79N), however, caused differential effects on binding to Fd-reductase and P450scc, suggesting that the interaction sites are not identical. We propose a model in which Fd-reductase and P450scc share a requirement for ferredoxin residues Asp-76 and Asp-79 but have other determinants that differ and play an important role in binding. This model is consistent with the hypothesis that ferredoxin functions as a mobile shuttle in steroidogenic electron transfer, and it is considered unlikely that a functional ternary complex is formed.  相似文献   

9.
Millisecond photocycle kinetics were measured at room temperature for 13 site-specific bacteriorhodopsin mutants in which single aspartic acid residues were replaced by asparagine, glutamic acid, or alanine. Replacement of aspartic acid residues expected to be within the membrane-embedded region of the protein (Asp-85, -96, -115, or -212) produced large alterations in the photocycle. Substitution of Asp-85 or Asp-212 by Asn altered or blocked formation of the M410 photointermediate. Substitution of these two residues by Glu decreased the amount of M410 formed. Substitutions of Asp-96 slowed the decay rate of the M410 photointermediate, and substitutions of Asp-115 slowed the decay rate of the O640 photointermediate. Corresponding substitutions of aspartic acid residues expected to be in cytoplasmic loop regions of the protein (Asp-36, -38, -102, or -104) resulted in little or no alteration of the photocycle. Our results indicate that the defects in proton pumping which we have previously observed upon substitution of Asp-85, Asp-96, Asp-115, and Asp-212 [Mogi, T., Stern, L. J., Marti, T., Chao, B. H., & Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4148-4152] are closely coupled to alterations in the photocycle. The photocycle alterations observed in these mutants are discussed in relation to the functional roles of specific aspartic acid residues at different stages of the bacteriorhodopsin photocycle and the proton pumping mechanism.  相似文献   

10.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to form acetyl-CoA and acetoacetate. In metal-dependent aldol and Claisen reactions, acidic residues often function either as cation ligands or as participants in general acid/base catalysis. Site-directed mutagenesis was used to produce conservative substitutions for the conserved acidic residues Glu-37, Asp-42, Glu-72, Asp-204, Glu-279, and Asp-280. HMG-CoA lyase deficiency results from a human mutation that substitutes lysine for glutamate 279. The E279K mutation has also been engineered; expression in Escherichia coli produces an unstable protein. Substitution of alanine for glutamate 279 produces a protein that is sufficiently stable for isolation and retains substantial catalytic activity. However, thermal inactivation experiments demonstrate that E279A is much less stable than wild-type enzyme. HMG-CoA lyase deficiency also results from mutations at aspartate 42. Substitutions that eliminate a carboxyl group at residue 42 perturb cation binding and substantially lower catalytic efficiency (104-105-fold decreases in specific activity for D42A, D42G, or D42H versus wild-type). Substitutions of alanine for the other conserved acidic residues indicate the importance of glutamate 72. E72A exhibits a 200-fold decrease in kcat and >103-fold decrease in kcat/Km. E72A is also characterized by inflation in the Km for activator cation (26-fold for Mg2+; >200-fold for Mn2+). Similar, but less pronounced, effects are measured for the D204A mutant. E72A and D204A mutant proteins both bind stoichiometric amounts of Mn2+, but D204A exhibits only a 2-fold inflation in KD for Mn2+, whereas E72A exhibits a 12-fold inflation in KD (23 microm) in comparison with wild-type enzyme (KD = 1.9 microm). Acidic residues corresponding to HMG-CoA lyase Asp-42 and Glu-72 are conserved in the HMG-CoA lyase protein family, which includes proteins that utilize acetyl-CoA in aldol condensations. These related reactions may require an activator cation that binds to the corresponding acidic residues in this protein family.  相似文献   

11.
The drug-binding domain of the human multidrug resistance P-glycoprotein (P-gp) probably consists of residues from multiple transmembrane (TM) segments. In this study, we tested whether the amino acids in TM11 participate in binding drug substrates. Each residue in TM11 was initially altered by site-directed mutagenesis and assayed for drug-stimulated ATPase activity in the presence of verapamil, vinblastine, or colchicine. Mutants G939V, F942A, T945A, Q946A, A947L, Y953A, A954L, and G955V had altered drug-stimulated ATPase activities. Direct evidence for binding of drug substrate was then determined by cysteine-scanning mutagenesis of the residues in TM11 and inhibition of drug-stimulated ATPase activity by dibromobimane, a thiol-reactive substrate. Dibromobimane inhibited the drug-stimulated ATPase activities of two mutants, F942C and T945C, by more than 75%. These results suggest that residues Phe(942) and Thr(945) in TM11, together with residues previously identified in TM6 (Leu(339) and Ala(342)) and TM12 (Leu(975), Val(982), and Ala(985)) (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948) form part of the drug-binding domain of P-gp.  相似文献   

12.
D A Griffith  A M Pajor 《Biochemistry》1999,38(23):7524-7531
The role of acidic amino acid residues in cation recognition and selectivity by the Na+/dicarboxylate cotransporter, NaDC-1, was investigated by site-directed mutagenesis and expression in Xenopus oocytes. Four of the residues tested, Asp-52, Glu-74, Glu-101, and Glu-332, were found to be unimportant for transport activity. However, substitutions of Asp-373 and Glu-475, conserved residues found in transmembrane domains M8 and M9, respectively, altered transport kinetics. Replacements of Asp-373 with Ala, Glu, Asn, and Gln resulted in changes in sodium affinity and cation selectivity in NaDC-1, indicating that the carbonyl oxygen at this position may play a role in the topological organization of the cation-binding site. In contrast, substitutions of Glu-475 led to dramatic reductions in transport activity and changes in transport kinetics. Substitution with Gln led to a transporter with increased substrate and sodium affinity, while the E475D mutant was inactive. The E475A mutant appeared to have poor sodium binding. Substrate-induced currents in the E475A mutant exhibited a strong voltage dependence, and a reversal of the current was seen at -30 mV. The results suggest that Glu-475 may play a role in cation binding and possibly also in mediating anion channel activity. Remarkably, mutations of both Asp-373 and Glu-475 affected the Km for succinate in NaDC-1, suggesting dual roles for these residues in determining the affinity for substrate and cations. We propose that at least one of the cation-binding sites and the substrate-binding site are close together in the carboxy-terminal portion of NaDC-1, and thus transmembrane domains M8 and M9 are candidate structures for the formation of the translocation pathway.  相似文献   

13.
Zhong M  Navratil AM  Clay C  Sanborn BM 《Biochemistry》2004,43(12):3490-3498
Oxytocin receptor (OTR) activates the GTP-binding protein Galpha(q). To investigate whether the N-terminal region of the fourth intracellular domain of this receptor, which forms putative helix 8, plays a role in coupling, its hydrophilic residues (H7.59, H7.62, E7.63, Q7.66, and R7.67) were mutated individually to alanine. In COSM6 cells, these mutants were expressed at equivalent concentrations, but at lower concentrations than OTR. Alanine substitution for H7.62 or Q7.66 did not substantially affect the affinity for OT (K(d) = 0.63 and 0.48 nM, respectively, vs 0.52 nM for the wild type), whereas substitution for H7.59, E7.63, or R7.67 reduced the affinity 5-6-fold. When expressed at equal concentrations, OTR-H7.62/A and OTR-Q7.66/A stimulated phosphatidylinositide turnover as well as OTR, whereas OTR-H7.59/A, OTR-E7.63/A, and OTR-R7.67/A exhibited an impaired ability to respond to OT. Therefore, residues H7.59, E7.63, and R7.67 within the putative hydrophilic interface appeared to influence both the OTR conformation and Galpha(q) coupling. To explore this further, five multiple alanine substitution mutants were constructed. Alanine modification at H7.62 and Q7.66 did not substantially affect the affinity for OT (K(d) = 0.75 nM), whereas any combination of alanine substitutions for H7.59, E7.63, and R7.67 produced mutant receptors that lost high-affinity ligand binding. While OTR-(H7.62,Q7.66)/A exhibited PLC activation equivalent to that of OTR, receptors with two or more changes in H7.59, E7.63, and R7.67 lost the ability to respond to OT in a dose-dependent manner. Five residues (L7.60, F7.61, L7.64, V7.65, and F7.68) in the opposite hydrophobic interface were also mutated to alanine. None of these substitutions affected ligand binding; only OTR-(L7.60,F7.61)/A had a somewhat weaker ability to activate PLC. These data are consistent with the prediction that these residues lie within an amphipathic alpha-helix and emphasize the importance of this hydrophilic interface, and particularly of H7.59, E7.63, and R7.67, in OTR function.  相似文献   

14.
Mitochondrial ATP synthase (F(1)F(0)-ATPase) is regulated by an intrinsic ATPase inhibitor protein, IF(1). We previously found that six residues of the yeast IF(1) (Phe17, Arg20, Glu21, Arg22, Glu25, and Phe28) form an ATPase inhibitory site [Ichikawa, N. and Ogura, C. (2003) J. Bioenerg. Biomembr. 35, 399-407]. In the crystal structure of the F(1)/IF(1) complex [Cabezón, E. et al. (2003) Nat. Struct. Biol. 10, 744-750], the core residues of the inhibitory site interact with Arg408, Arg412 and Glu454 of the beta-subunit of F(1). In the present study, we examined the roles of the three beta residues by means of site-directed mutagenesis. A total of six yeast mutants were constructed: R408I, R408T, R412I, R412T, E454Q, and E454V. The betaArg412 and betaGlu454 mutants (R412I, R412T, E454Q, and E454V) could grow on a nonfermentable lactate medium, but the betaArg408 mutants (R408I and R408T) could not. The ATPase activity of isolated mitochondria was decreased in R412I, R412T, E454Q, and E454V mutant cells, and undetectable in R408I and R408T cells. The subunits of F(1) (alpha, beta, and gamma) were detected in mitochondria from each mutant on immunoblotting, and the F(1)F(0) complex was isolated from them. These results indicate that betaArg408 is essential not for assembly of the F(1)F(0) complex but for the catalytic activity of the enzyme. In the crystal structure of F(1), betaArg408 binds to alphaGlu399 in the alpha(DP)/beta(DP) pair and seems to be important for formation of the closed alpha(DP)/beta(DP) conformation. IF(1) seems to disrupt this alpha(DP)Glu399/beta(DP)Arg408 interaction by binding to beta(DP)Arg408, and to interfere with the change from the open alpha(DP)/beta(DP) conformation to the closed conformation that is required for catalysis by F(1)F(0)-ATPase.  相似文献   

15.
Domain I of the Cry1Ab insecticidal toxic protein has seven alpha-helices and is considered to be involved in the ion channel activity. While other alpha-helices, particularly alpha-4 and alpha-5, have been extensively explored, the remaining alpha-helices have been slightly studied. Site-directed mutagenesis was used to generate mutations throughout sequences encoding the alpha-helix 7 to test its role in ion channel function. Every amino acid residue in alpha-helix 7 was mutated to alanine. Most resultant proteins, e.g., D225A, W226A, Y229A, N230A, R233A, R234A, D242A, and F247A yielded no protoxin or were sensitive to degradation by trypsin or Manduca sexta midgut juice. Other mutant proteins, R224A, R228A, and E235A, were resistant to degradation to the above proteases but were 8, 30, and 12 times less toxic to M. sexta, respectively, than the wild-type Cry1Ab. Circular dichroism spectroscopy indicated a very small change in the R228A spectrum, while R224A and E235A display the same spectrum as the wild-type protein. These three mutant proteins showed little differences from Cry1Ab when analyzed by saturation binding and competition binding kinetics with (125)I-labeled toxin or by surface plasmon resonance to M. sexta brush border membrane vesicles. More conservative amino acid substitutions were introduced into alpha-helix 7 residues: R228K, F232Y, E235Q, and F247Y. In comparison with wild-type Cry1Ab, mutant proteins R228K, F232Y, E235A, and E235Q selectively discriminate between K+ and Rb+, while R224A and R228A had reduced inhibition of short-circuit current for both ions, when analyzed by voltage clamping of M. sexta midguts.  相似文献   

16.
In order to identify residues required for the binding of interleukin-8 (IL-8) to its receptor, mutants were constructed in which clusters of charged amino acids were systematically replaced with alanine along the entire IL-8 sequence. The mutants were tested for their ability to induce a receptor-mediated rise in cytosolic free Ca2+, a property of wild-type IL-8 which can readily be detected by flow cytometry using neutrophils loaded with the calcium probe Indo-1. Eleven of the 12 mutants caused neutrophil calcium mobilization at 5 nM; the exception being a triple alanine mutant at positions K3, E4, and R6, which was inactive at all concentrations tested (150 nM maximum). A second set of mutants was generated in which residues 1-15 were individually mutated to alanine. Mutants E4A, L5A, or R6A were all inactive in the Ca2+ assay at 5 nM and competed poorly with 125I-IL-8 for neutrophil receptor binding; I10A, E4A, L5A, and R6A had approximately 30-, 100-, 100-, and 1000-fold reduced affinity, as compared with control IL-8, respectively. The nuclear magnetic resonance structure of IL-8 indicates that, in solution, the side chains of E4, L5, R6, and I10 point away from the core of the protein and do not participate in any intramolecular hydrogen bonds or salt bridges (Clore, G. M., and Gronenborn, A. M. (1991) J. Mol. Biol. 217, 611-620).  相似文献   

17.
Colicin E1 was altered by oligonucleotide-directed mutagenesis at the site of three charged residues on the COOH side of the 35-residue hydrophobic segment in the channel-forming domain. Asp-509 is one of five conserved acidic residues in the channel domain of colicins A, B, E1, Ia, and Ib and is the first charged residue following the hydrophobic segment, followed by the basic residues Lys-510 and Lys-512. Asp-509 and Lys-512 were changed to amber and ochre stop codons, respectively, while Lys-510 was mutated to a Met codon. Proteins truncated after residue 508 or 511, and missing the last 14 or 11 residues, were obtained from a nonsuppressing cell strain harboring the mutant plasmid while full-length colicin molecules with single residue changes at Asp-509 to Leu, Ser, and Gln, and Lys-512 to Tyr, were obtained by using appropriate suppressor strains. The truncated colicins displayed (i) a low cytotoxicity, approximately 1% of intact wild-type colicin, (ii) 10-fold less in vitro channel activity with liposomes, and (iii) reduced labeling of the colicin in liposomes by a phospholipid photoaffinity probe, showing that one or more of the residues following Asn-511 is necessary for both in vivo and in vitro activity and insertion into the bilayer. (iv) The truncated mutants also displayed an altered conformation at pH 6 that allowed greater binding and activity with liposomes at this pH relative to wild type. The cytotoxicity of single residue substitutions at Asp-509 showed a range of cytotoxicities, wild type greater than Ser-509 greater than Gln-509 greater than Leu-509, although none of these changes greatly affected the in vitro channel activity or pH dependence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Positively charged plastocyanin from Anabaena sp. PCC 7119 was investigated by site-directed mutagenesis. The reactivity of its mutants toward photosystem I was analyzed by laser flash spectroscopy. Replacement of arginine at position 88, which is adjacent to the copper ligand His-87, by glutamine and, in particular, by glutamate makes plastocyanin reduce its availability for transferring electrons to photosystem I. Such a residue in the copper protein thus appears to be isofunctional with Arg-64 (which is close to the heme group) in cytochrome c(6) from Anabaena (Molina-Heredia, F. P., Diaz-Quintana, A., Hervás, M., Navarro, J. A., and De la Rosa, M. A. (1999) J. Biol. Chem. 274, 33565-33570) and Synechocystis (De la Cerda, B., Diaz-Quintana, A., Navarro, J. A. , Hervás, M., and De la Rosa, M. A. (1999) J. Biol. Chem. 274, 13292-13297). Other mutations concern specific residues of plastocyanin either at its positively charged east face (D49K, H57A, H57E, K58A, K58E, Y83A, and Y83F) or at its north hydrophobic pole (L12A, K33A, and K33E). Mutations altering the surface electrostatic potential distribution allow the copper protein to modulate its kinetic efficiency: the more positively charged the interaction site, the higher the rate constant. Whereas replacement of Tyr-83 by either alanine or phenylalanine has no effect on the kinetics of photosystem I reduction, Leu-12 and Lys-33 are essential for the reactivity of plastocyanin.  相似文献   

19.
Hepatitis C virus NS3-4A is a membrane-bound enzyme complex that exhibits serine protease, RNA helicase, and RNA-stimulated ATPase activities. This enzyme complex is essential for viral genome replication and has been recently implicated in virus particle assembly. To help clarify the role of NS4A in these processes, we conducted alanine scanning mutagenesis on the C-terminal acidic domain of NS4A in the context of a chimeric genotype 2a reporter virus. Of 13 mutants tested, two (Y45A and F48A) had severe defects in replication, while seven (K41A, L44A, D49A, E50A, M51A, E52A, and E53A) efficiently replicated but had severe defects in virus particle assembly. Multiple strategies were used to identify second-site mutations that suppressed these NS4A defects. The replication defect of NS4A F48A was partially suppressed by mutation of NS4B I7F, indicating that a genetic interaction between NS4A and NS4B contributes to RNA replication. Furthermore, the virus assembly defect of NS4A K41A was suppressed by NS3 Q221L, a mutation previously implicated in overcoming other virus assembly defects. We therefore examined the known enzymatic activities of wild-type or mutant forms of NS3-4A but did not detect specific defects in the mutants. Taken together, our data reveal interactions between NS4A and NS4B that control genome replication and between NS3 and NS4A that control virus assembly.  相似文献   

20.
The role of Asp-212 in the proton pumping mechanism of bacteriorhodopsin (bR) has been studied by a combination of site-directed mutagenesis and Fourier transform infrared difference spectroscopy. Difference spectra were recorded at low temperature for the bR----K and bR----M photoreactions of the mutants Asp-212----Glu, Asp-212----Asn, and Asp-212----Ala. Despite an increased proportion of the 13-cis form of bR (normally associated with dark adaptation), all of the mutants exhibited a light-adapted form containing as a principal component the normal all-trans retinal chromophore. The absence of a shift in the retinal C = C stretching frequency in these mutants indicates that Asp-212 is not a major determinant of the visible absorption wavelength maximum in light-adapted bR. It is unlikely that Asp-212 is the acceptor group for the Schiff base proton since both the Asp-212----Glu and Asp-212----Ala mutants formed an M intermediate. All of the Asp-212 mutants were missing a Fourier transform infrared difference band that had been assigned previously to protonation changes of Tyr-185. These results are discussed in terms of a model in which Tyr-185 and Asp-212 form a polarizable hydrogen bond and are positioned near the C13-Schiff base portion of the chromophore. These 2 residues may be involved in stabilizing the relative orientation of the F and G helices and isomerizing the retinal in a regioselective manner about the C13 = C14 double bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号