首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde-3-phosphate dehydrogenase (GPD) is inactivated by phenylhydrazine, isopropylhydrazine, and phenyldiimide under anaerobic conditions. The hydrazines reactivate the dehydrogenase function of GPD and, therefore, reduce the sulfenic acid at the active site of the acyl phosphatase. Lactoperoxidase is also inactivated by phenylhydrazine, isopropylhydrazine, and phenyldiimide under anaerobic conditions. When lactoperoxidase is inactivated by an aerobic, aqueous solution of [14C] phenylhydrazine 1 mole of phenylhydrazine is covalently bound per 40,000 g of lactoperoxidase.  相似文献   

2.
3.
4.
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.  相似文献   

5.
6.
7.
Summary Although only one gene is known to be functional, numerous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) related sequences are scattered throughoutMus musculus andRattus rattus genomes. In this report we show that: (1) GAPDH pseudogenes are repeated to comparable extents, at least 400 copies, in 12 other Muridae species; (2) the complete, or nearly so, sequence of GAPDH messenger RNA is amplified, and a high proportion, if not all of these copies, are intronless; (3) GAPDH pseudogenes are preferentially located in heavily methylated and DNAse I-insensitive regions of chromatin; and (4) the presence of atypical GAPDH-related mRNAs in different cellular contexts raises the possibility that more than one GAPDH gene is transcribed.  相似文献   

8.
The yields in molecules per 100 eV for active-site and sulphydryl loss from glyceraldehyde-3-phosphate dehydrogenase have been determined in nitrous-oxide-saturated, aerated and argon-saturated solutions. Molecular hydrogen peroxide produces a sulphenic acid product, which can be repaired by post-irradiation treatment with dithiothreitol. Comparison of the yields under various conditions showed that in aerated solutions both .OH and .O2-radicals inactivated the enzyme with an efficiency of about 26 per cent. However, the efficiency of .OH in air-free solutions was less, and inactivation by .H and eaq- did not appear to be appreciable. There is a correlation between SH loss and loss of active sites.  相似文献   

9.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

10.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

11.
Glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate:nicotinamide adenine dinucleotide oxidoreductase (phosphorylating), EC 1.2.1.12), isolated from rat skeletal muscle undergoes a rapid inactivation upon incubation at 25 °C in the presence of adenine nucleotides. The reaction can be described as a reversible tetramerdimer equilibrium, only the tetrameric form of the enzyme being active in the presence of nucleotides. The standard free energy changes upon dissociation at 25 °C in 0.1 m phosphate buffer pH 7.5 in the presence of saturating concentrations of ATP, ADP, AMP, and ADP-ribose were found to be 6.69, 6.93, 8.31, and 10.5 kcal/mol, respectively. Nucleotide-dependent inactivation does not bring about any alteration of the reactivity of SH groups of the enzyme towards 5,5′-dithiobis(2-nitrobenzoic acid). This is not the case, however, when the enzyme undergoes NaCl-induced cold inactivation, which is accompanied by an increased accessibility of SH groups. ADP and ATP protect the enzyme against cold inactivation in the presence of NaCl and decrease the enhanced reactivity of SH groups. Adenine nucleotide-induced inactivation is prevented in the presence of NAD. The protective effect is noncooperative, the extent of inactivation being dependent upon the amount of active centers free of bound coenzyme. Addition of excess NAD to the inactivated enzyme results in a complete regain of activity. A comparative study made on the rate of reforming enzyme NAD complex (followed spectrophotometrically) and the regain of activity has demonstrated that the former process is markedly more rapid than the latter. The reactivation was observed to follow second-order kinetics, which suggests that the reassociation of the inactive NAD-liganded dimers is the rate-limiting step. The data are consistent with the existence of different conformational transitions responsible for the restoration of the intersubunit contact area, catalytic activity, and thermal stability of the enzyme molecule, respectively.  相似文献   

12.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

13.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
17.
Oxidation of the essential cysteins of glyceraldehyde-3-phosphate dehydrogenase into the sulfenic acid derivatives was observed in the presence of ascorbate, resulting in a decrease in the dehydrogenase activity and the appearance of the acylphosphatase activity. The oxidation was promoted by EDTA, NAD(+), and phosphate, and blocked in the presence of deferoxamine. The ascorbate-induced oxidation was suppressed in the presence of catalase, suggesting the accumulation of hydrogen peroxide in the conditions employed. The data indicate the metal-mediated mechanism of the oxidation due to the presence of metal traces in the reaction medium. Physiological importance of the mildly oxidized GAPDH is discussed in terms of its ability to uncouple glycolysis and to decrease the ATP level in the cell.  相似文献   

18.
19.
The reaction of ozone with glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
Inactivation of glyceraldehyde-3-phosphate dehydrogenase (GPDH) by ozone can be correlated with oxidation of the active-site -SH residue. Oxidation of peripheral -SH groups, and tryptophan, methionine, and histidine residues occurs concomitantly, but loss of activity depends solely on active-site oxidation. Inactivation is only slightly reversible by dithiothreitol. Kinetic studies show that inhibition of GPDH by ozone mimics noncompetitive inhibition and is characterized as irreversible enzyme inactivation. Analysis of products resulting from ozone oxidation of glutathione suggests that cysteic acid is the product of protein-SH oxidation. Despite oxidation of the active-site -SH , no significant decrease in the Racker band absorbance occurs. This is explained by the appearance of a new chromophore in this region of the absorbance spectrum. Increased absorbance at 322 nm following ozone treatment indicates that tryptophan is converted quantitatively to N-formylkynurenine. When the active-site -SH is reversibly blocked by tetrathionate, enzyme activity is completely recoverable following reaction of the derivatized enzyme with a 1.3X excess of ozone over enzyme monomer. Activity is fully recovered despite the oxidation of peripheral -SH, tryptophan, and histidine residues. Circular dichroism spectra of ozone-treated enzyme show that reaction of GPDH with up to a threefold excess of ozone over enzyme monomer results in no significant disruption of protein secondary structure. Spectra in the near-uv show distinct changes that reflect tryptophan oxidation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号