首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A casein-type protein kinase has been isolated from cauliflower (Brassica cauliflora Gars.) nuclei and purified to a specific activity of 23,000 units/milligram of protein (1 unit is defined as the transfer of 1 picomole of 32Pi from γ-[32P]ATP to substrate per minute at 28 C). The enzyme has a molecular weight of approximately 39,000 as judged by sucrose density gradient sedimentation. The casein kinase requires ATP as the phosphate donor and will phosphorylate casein and phosvitin, but not histones. The enzyme activity is not affected by cAMP or cGMP. The casein kinase appears to be analogous to casein kinases described in other plant and animal systems.  相似文献   

2.
Casein kinase II is an ubiquitous serine-threonine kinase whose functional significance and regulation in the living cell are not clearly understood. The native enzyme has an oligomeric structure made of two different (alpha and beta) subunits with an alpha 2 beta 2 stoichiometry. To facilitate the study of the structure-activity relationship of the kinase, we have expressed its isolated subunits in a baculovirus-directed insect cell expression system. The resulting isolated recombinant alpha subunit exhibited a protein kinase catalytic activity, in agreement with previous observations [Cochet, C., & Chambaz, E. M. (1983) J. Biol. Chem. 258, 1403-1406]. Coinfection of insect cells with recombinant viruses encoding the two kinase subunits resulted in the biosynthesis of a functional enzyme. Active recombinant oligomeric kinase was purified to near homogeneity with a yield of about 5 mg of enzymatic protein per liter, showing that, in coinfected host cells, synthesis was followed, at least in part, by recombination of the two subunits with an alpha 2 beta 2 stoichiometry. The catalytic properties of the recombinant enzyme appeared highly similar to those previously observed for casein kinase II purified from bovine tissue. Access to the isolated subunits and to their alpha 2 beta 2 association disclosed that the beta subunit is required for optimal catalytic activity of the kinase. In addition, the beta subunit is suggested to play an essential role in the regulated activity of the native casein kinase II. This is clearly illustrated by the observation of the effect of spermine which requires the presence of the beta subunit to stimulate the kinase catalytic activity which is borne by the alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Zhang S  Jin CD  Roux SJ 《Plant physiology》1993,103(3):955-962
A casein kinase II-type protein kinase has been purified from the cytosolic fraction of etiolated pea (Pisum sativum L.) plumules to about 90% purity as judged from Coomassie blue stained sodium dodecyl sulfate-polyacrylamide gels. This kinase has a tetrameric [alpha][alpha]'[beta]2 structure with a native molecular mass of 150 kD, and subunit molecular masses of 41 and 40 kD for the two catalytic subunits ([alpha] and [alpha]') and 35 kD for the putative regulatory subunit ([beta]).Casein and phosvitin can be used as artificial substrates for this kinase. Both serine and threonine residues were phosphorylated when mixed casein, [beta]-casein, or phosvitin were used as the substrate, whereas only serine was phosphorylated if [alpha]-casein or histone III-S was the substrate. The kinase activity was stimulated 130% by 0.5 mM spermine (the concentration required for 50% of maximal enzyme activity [A50] = 0.1 mM) and 80% by 2.5 mM spermidine (A50 = 0.4 mM), whereas putrescine and cadaverine had no effect. The kinase was very sensitive to inhibition by heparin (concentration for 50% inhibition [I50] = 0.025 [mu]g/mL). In contrast to most other casein kinase II-type protein kinases, this preparation was inhibited by K+ and Na+, with I50 values of 75 and 65 mM, respectively. Pretreatment of the purified kinase preparation in vitro with alkaline phosphatase caused a 5-fold decrease in its activity. Additionally, this kinase also lost its activity when its [beta] subunit was autophosphorylated in the absence of substrate. These results suggest that the activity of this casein kinase II protein kinase may be regulated by the phosphorylation state of two different sites in its multimeric structure.  相似文献   

4.
The relationship between the alpha and alpha' subunits of casein kinase II was studied. For this study, a rapid scheme for the purification of the enzyme from bovine testis was developed. Using a combination of chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite, gel filtration on Sephacryl S-300 and heparin-agarose, the enzyme was purified approximately 7,000-fold. The purification scheme was completed within 48 h and resulted in the purification of milligram quantities of casein kinase II from 1 kg of fresh bovine testis. The purified enzyme had high specific activity (3,000-5,000 nmol of phosphate transferred per min/mg protein) when assayed at 30 degrees C with ATP and the synthetic peptide RRRDDDSDDD as substrates. The isolated enzyme was a phosphoprotein with an alkali-labile phosphate content exceeding 2 mol/mol protein. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis three polypeptides were apparent: alpha (Mr 45,000), alpha' (Mr 40,000), and beta (Mr 26,000). Several lines of evidence conclusively demonstrated that the alpha and alpha' subunits are distinct polypeptides. Two-dimensional maps of 125I-tryptic peptides derived from the two proteins were related, but distinct. An antipeptide antibody was raised in rabbits which reacted only with the alpha subunit on immunoblots and failed to react with either the alpha' or beta subunits. Direct comparison of peptide sequences obtained from the alpha and alpha' subunits revealed differences between the two polypeptides. The results of this study clearly demonstrate that the alpha and alpha' subunits of casein kinase II are not related by post-translational modification and are probably encoded by different genes.  相似文献   

5.
The catalytic (alpha) subunit of casein kinase II from Drosophila, cloned and expressed in Escherichia coli (Saxena, A., Padmanabha, R., and Glover, C. V. C., (1987) Mol. Cell. Biol. 7, 3409-3417), has been purified and characterized, and the properties have been compared to those of the holoenzyme. The catalytic subunit exhibits protein kinase activity with casein as substrate and is autophosphorylated. The specific activity of the purified subunit is 6% of the activity of the holoenzyme from reticulocytes or from Drosophila. The alpha subunit is a monomer, eluting at Mr = 40,000 upon gel filtration in high salt, but as part of an aggregate in low salt. The alpha subunit has been purified to apparent homogeneity by sequential chromatography on DEAE-cellulose, Mono S, and Mono Q. A single band, Mr = 37,000, is detected by silver staining following polyacrylamide gel electrophoresis. The isolated alpha subunit displays apparent Km values for beta casein, ATP, and GTP similar to those of the holoenzyme. The activity of the alpha subunit is inhibited by heparin with an I50 of 0.1-0.3 micrograms/ml, a value similar to that observed for the holoenzyme; autophosphorylation is also inhibited by heparin. Polylysine has no stimulatory effect on the activity of the catalytic subunit, as measured with casein and by autophosphorylation, but stimulates both activities with the holoenzyme. When physiological substrates for casein kinase II are examined, glycogen synthase and eukaryotic initiation factor 3 (eIF-3) (p120) are phosphorylated by the alpha subunit at a rate equivalent to that of the holoenzyme, while phosphorylation of eIF-3 (p67) is reduced 9-fold and eIF-2 beta is not modified. From these data, it can be concluded that the alpha subunit of casein kinase II is sufficient for catalysis, is autophosphorylated, and can be directly inhibited by heparin, whereas the beta subunit mediates the effects of basic stimulatory compounds and is involved in recognition and/or binding to specific physiological substrates.  相似文献   

6.
A protein kinase was extensively purified to near-homogeneity from wheat germ by a procedure involving affinity chromatography on casein-Sepharose 4B, gel filtration, and repeated chromatography on carboxymethyl-Sepharose CL-6B. The protein kinase preparations have the highest specific activities (up to 656 nanomoles phosphate incorporated per minute per milligram of protein) yet reported for plant protein kinases. The major polypeptides in purified preparations were revealed as two barely-resolved bands (molecular weight 31,000) on polyacrylamide gel electrophoresis in subunit-dissociating conditions. The molecular size of the protein kinase as determined from gel filtration is 30,000. The protein kinase catalyzes the phosphorylation of casein, phosvitin, and the wheat germ cyclic AMP-binding protein cABPII but not of bovine serum albumin and histones nor of the wheat germ cytokinin-binding protein CBP. The protein kinase has a pH optimum of 7.9 and a Km value for ATP of 10 micromolar. The protein kinase differs from wheat germ CBP kinase in molecular weight, differential sensitivity to inhibitors, and in substrate specificity.  相似文献   

7.
A protein kinase from rabbit reticulocytes, able to phosphorylate the beta subunit of eukaryotic initiation factor 2 (eIF-2), has been demonstrated to phosphorylate also glycogen synthase. A glycogen synthase kinase (PC0.7) from rabbit skeletal muscle has been shown to phosphorylate the beta subunit of eIF-2. Comparison of highly purified preparations of the two protein kinases has indicated several similarities of properties. 1) Both enzymes were associated with two major polypeptide species, alpha (Mr = 43,000) and beta (Mr = 25,000), and exhibited apparent native molecular weights of 176,000-180,000 by gel filtration and 130,000-140,000 by sucrose density gradient sedimentation. 2) Both enzymes phosphorylated glycogen synthase, eIF-2 beta, phosvitin, and casein and were effective in utilizing GTP and ATP as phosphoryl donors. 3) Both enzymes displayed the same chromatographic behavior on phosvitin-Sepharose, phosphocellulose, and DEAE-cellulose. 4) Both enzymes underwent an autophosphorylation of the beta polypeptide when incubated with ATP and Mg2+. On the basis of these and other properties, we propose that the two protein kinases, if not identical, are very similar enzymes.  相似文献   

8.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

9.
Phosphorylation of casein kinase II   总被引:5,自引:0,他引:5  
E Palen  J A Traugh 《Biochemistry》1991,30(22):5586-5590
Casein kinase II from rabbit reticulocytes is a tetramer with an alpha,alpha' beta 2 or alpha 2 beta 2 structure; the alpha subunits contain the catalytic activity, and the beta subunits are regulatory in nature [Traugh, J.A., Lin, W. J., Takada-Axelrod, F., & Tuazon, P. T. (1990) Adv. Second Messenger Phosphoprotein Res. 24, 224-229]. When casein kinase II is isolated from rabbit reticulocytes by a rapid two-step purification of the enzyme, both the alpha and beta subunits are phosphorylated to a significant extent. In vitro, purified casein kinase II undergoes autophosphorylation on the beta subunit. In the presence of polylysine and polyarginine, phosphorylation of the beta subunits is inhibited, and the alpha subunits (alpha and alpha') become autophosphorylated. The effectiveness of polylysine coincides with the molecular weight. With basic proteins, including a number of histones and protamine, autophosphorylation of both subunits is observed. With histones, autophosphorylation of each subunit can be greater than that observed with the autophosphorylated enzyme alone or with a basic polypeptide. Thus, the potential exists for modulatory proteins to alter the autophosphorylation state of casein kinase II. Taken together, the data suggest that phosphorylation of the alpha subunit of casein kinase II in vivo may be due to an unidentified protein kinase or due to autophosphorylation. In the latter instance, casein kinase II could be transiently associated with specific intracellular compounds, such as basic proteins, with a resultant stimulation of autophosphorylation.  相似文献   

10.
A procedure is described for identifying protein kinase activity in protein samples following electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. Protein kinase activity is detected by renaturation of the enzymes within the gel followed by phosphorylation with [gamma-32P]ATP of either substrates included in the polyacrylamide gel or of the kinase itself. Then, after removal of the unreacted [gamma-32P]ATP by washing the gel in the presence of an anion-exchange resin, the positions (Mr) of the protein kinase activity are visualized by autoradiography. Studies using a purified catalytic subunit of cAMP-dependent protein kinase indicate that enzyme concentrations as low as 0.01 microgram can easily be detected on gels containing 1 mg/ml casein. The technique is also useful for identifying active subunits of multisubunit enzymes. The active subunit of casein kinase II, for example, can readily be determined by renaturing the dissociated enzyme in gels containing casein. Putative protein kinases present in crude mixtures of proteins can also be detected following separation by gel electrophoresis and can be characterized on the basis of molecular weight and identity of the phosphorylated amino acid. Using this technique, at least three major protein kinases were detected in a mixture of proteins prepared by subfraction of red blood cell membranes.  相似文献   

11.
A cyclic nucleotide-independent protein kinase has been isolated from Drosophila melanogaster by chromatography on phosphocellulose and hydroxylapatite followed by gel filtration and glycerol gradient sedimentation. As determined by sodium dodecyl sulfate gel electrophoresis, the purified enzyme is greater than 95% homogeneous and is composed of two distinct subunits, alpha and beta, having Mr = 36,700 and 28,200, respectively. The native form of the enzyme is an alpha 2 beta 2 tetramer having a Stokes radius of 48 A, a sedimentation coefficient of 6.4 S, and Mr approximately 130,000. The purified kinase undergoes an autocatalytic reaction resulting in the specific phosphorylation of the beta subunit, exhibits a low apparent Km for both ATP and GTP as nucleoside triphosphate donor (17 and 66 microM, respectively), phosphorylates both casein and phosvitin but neither histones nor protamine, modifies both serine and threonine residues in casein, and is strongly inhibited by heparin (I50 = 21 ng/ml). These properties are remarkably similar to those of casein kinase II, an enzyme previously described in several mammalian and avian species. The strong similarities among the insect, avian, and mammalian enzymes suggest that casein kinase II has been highly conserved during evolution.  相似文献   

12.
Casein kinase II consists of catalytic (alpha) and regulatory (beta) subunits complexed into a heterotetrameric alpha 2 beta 2 structure. Full-length cDNAs encoding the alpha and beta subunits of human casein kinase II were subcloned into an expression vector containing the cytomegalovirus promotor, yielding the expression constructs pCMV-alpha and pCMV-beta. Northern analyses of total cellular RNA prepared from COS-1 fibroblasts 65 h after transfection with pCMV-alpha or pCMV-beta or with both expression constructs showed marked specific increases in corresponding alpha and beta subunit RNAs. Immunoblot analysis utilizing anti-casein kinase II antiserum of cytosolic extracts prepared from COS-1 cells co-transfected with pCMV-alpha and pCMV-beta showed 2- and 4-fold increases in immunoreactive alpha and beta subunit protein, respectively, relative to vector-transfected cells. These same cytosolic fractions exhibited an average 5-fold increase in casein kinase II catalytic activity. COS-1 cells transfected with pCMV-alpha alone exhibited a 3-fold increase in immunoreactive alpha subunit protein and a nearly 2-fold increase in cytosolic casein kinase II catalytic activity. Transfection with the cDNA coding for the noncatalytic beta subunit alone also caused a near doubling of cytosolic casein kinase II catalytic activity. No increase in immunoreactive alpha subunit protein was observed in pCMV-beta-transfected cells, and no increase in immunoreactive beta subunit protein was observed in pCMV-alpha-transfected cells. These results indicate that a portion of the endogenous cellular casein kinase II protein is not fully active and that raising the concentration of the alpha or beta subunit stimulates this latent activity.  相似文献   

13.
A synthetic peptide of 18 amino acids corresponding to the inhibitory domain of the heat-stable protein kinase inhibitor was synthesized and shown to inhibit both the C alpha and C beta isoforms of the catalytic (C) subunit of cAMP-dependent protein kinase. Extracts from cells transfected with expression vectors coding for the C alpha or the C beta isoform of the C subunit required 200 nM protein kinase inhibitor peptide for half-maximal inhibition of kinase activity in extracts from these cells. An affinity column was constructed using this synthetic peptide, and the column was incubated with protein extracts from cells overexpressing C alpha or C beta. Elution of the affinity column with arginine allowed single step isolation of purified C alpha and C beta subunits. The C alpha and C beta proteins were enriched 200-400-fold from cellular extracts by this single step of affinity chromatography. No residual inhibitory peptide activity could be detected in the purified protein. The purified C subunit isoforms were used to demonstrate preferential antibody reactivity with the C alpha isoform by Western blot analysis. Furthermore, preliminary characterization showed both isoforms have similar apparent Km values for ATP (4 microM) and for Kemptide (5.6 microM). These results demonstrate that a combination of affinity chromatography employing peptides derived from the heat-stable protein kinase inhibitor protein and the use of cells overexpressing C subunit related proteins may be an effective means for purification and characterization of the C subunit isoforms. Furthermore, this method of purification may be applicable to other kinases which are known to be specifically inhibited by small peptides.  相似文献   

14.
Casein kinase G purified from bovine tissue is an oligomeric cyclic nucleotide-independent protein kinase made of two different monomers, namely an alpha (Mr = 38 kilodaltons) and a self-phosphorylatable beta (Mr = 27 kilodaltons) subunit. Treatment of the native enzyme under denaturing conditions (0.5 M NaCl, 4 M LiCl, and 20 to 35% formamide) resulted in a progressive selective removal of the beta subunit following gel filtration and a correlated loss of activity of the corresponding renatured enzyme. Mild digestion with papain resulted in a proteolytic alteration limited to the beta monomer with a concomitant partial loss of the enzyme activity. Isolation of the alpha and beta casein kinase G subunits was achieved by preparative reversed polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Renaturation of the proteins following sodium dodecyl sulfate removal by acetone and/or Triton X-100 treatment allowed reconstitution of a functional casein kinase G. Whereas the isolated alpha subunit was found to exhibit a weak catalytic activity, addition of the beta subunit was required for recovery of a maximal casein kinase activity. The process was dose-dependent and reached a plateau for an alpha:beta subunit molar ratio of approximately 1 to 1. These data suggest that while the casein kinase G alpha subunit bears the catalytic site, stoichiometric combination with the beta subunit is required for optimal enzymatic activity. A possible role of the beta subunit as a regulatory component of casein kinase G activity in the intact cell remains to be examined.  相似文献   

15.
16.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

17.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

18.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

19.
The second messenger-independent acidic peptide-specific protein kinase II (casein kinase II) from the cytosol of porcine liver has been purified to apparent homogeneity by using DEAE-cellulose, hydroxyl apatite, and phosphocellulose chromatography. The native enzyme has an apparent Mr of 150,000. After sodium dodecyl sulfate-gel electrophoresis a band of Mr = 39,000 and a slightly diffuse band of Mr = 27,000 were found indicating an alpha 2 beta 2 structure of this protein kinase. A thorough comparison with the corresponding enzyme from the nucleus was performed. The two enzymes differ in the subunit composition, as the nuclear enzyme is composed of subunits with a Mr of 95,000; they further differ in the heparin sensitivity and binding to blue dextran-Sepharose. Distinct differences in their nucleotide binding sites were found upon mapping with ATP analogs, although both enzymes utilize ATP as well as GTP. On the other hand, both enzymes phosphorylate identical sites in the casein variants beta A2 and alpha S1B at comparable rates. These results demonstrate for the first time the existence of distinct nucleus and cytoplasm specific type II "casein kinases".  相似文献   

20.
The M-phase-specific cdc2 (cell division control) protein kinase (a component of the M-phase-promoting factor) was found to activate casein kinase II in vitro. The increase in casein kinase II activity ranged over 1.5-5-fold. Increase in activity was prevented if ATP was replaced during the activation reaction by a non-hydrolysable analogue. Alkaline phosphatase treatment of the activated enzyme decreased the activity to the basal level. The beta subunit of casein kinase II was phosphorylated by cdc2 protein kinase at site(s) different from the autophosphorylation sites of the enzyme. Phosphoamino acid analysis showed that the beta subunit was phosphorylated by cdc2 protein kinase at threonine residues while autophosphorylation involved serine residues. Casein kinase II may be part of the cascade which leads to increased phosphorylation of many proteins at M-phase and therefore be involved in the pleiotropic effects of M-phase-promoting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号