首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S illey , P. & A rmstrong , D.G. 1984. Changes in metabolism and cell size of the anaerobic bacterium Selenomonas ruminantium 0078A at the onset of growth in continuous culture. Journal of Applied Bacteriology 56 , 487–492.
Initial metabolism of Selenomonas ruminantium 0078A in continuous culture was characterized by a high lactate and low volatile fatty acid production; this was associated with poor growth as determined by bacterial dry weight production, yet individual cells were considerably larger than those of the inoculum. Biomass production increased, cell size decreased and the fermentation pattern reverted to the characteristic low lactate and high volatile fatty acid production after approximately 90 h growth.  相似文献   

2.
The maximal amounts of growth of Selenomonas ruminantium were examined in the media containing various amounts of glucose. The yields of cells per unit weight of glucose are linear functions to glucose concentrations in the ranges between zero to 0.005% and 0.005 to 0.7%, Cell yields per glucose are greater in the former range, indicating greater a-mounts of energy are available per glucose at lower concentrations. Growth responses in lactate media containing various amounts of glucose showed that the preincubation with larger amounts of glucose is inhibitory for the following growth and metabolism of lactate. The organism produces predominantly lactate in the glucose medium. However, volatile fatty acid productions increase when the initial concentrations of glucose become low. Isotopic studies showed that the lactate utilization yielding volatile fatty acids is inhibited by the preceding metabolism of high concentrations of glucose. These results were discussed with regard to normal and abnormal fermentations in the rumen.  相似文献   

3.
A continuous coculture of four ruminal bacteria, Megasphaera elsdenii, Selenomonas ruminantium, Streptococcus bovis, and Lactobacillus sp. strain LB17, was used to study the effects of the ionophores monensin and tetronasin on the changes in ruminal microbial ecology that occur during the onset of lactic acidosis. In control incubations, the system simulated the development of lactic acidosis in vivo, with an initial overgrowth of S. bovis when an excess of glucose was added to the fermentor. Lactobacillus sp. strain LB17 subsequently became dominant as pH fell and lactate concentration rose. Both ionophores were able to prevent the accumulation of lactic acid and maintain a healthy non-lactate-producing bacterial population when added at the same time as an excess of glucose. Tetronasin was more potent in this respect than monensin. When tetronasin was added to the culture 24 h after glucose, the proliferation of lactobacilli was reversed and a non-lactate-producing bacterial population developed, with an associated drop in lactate concentration in the fermentor. Rises in culture pH and volatile fatty acid concentrations accompanied these changes. Monensin was unable to suppress the growth of lactobacilli; therefore, in contrast to tetronasin, monensin added 24 h after the addition of glucose failed to reverse the acidosis. Numbers of lactobacilli and lactate concentrations remained high, whereas pH and volatile fatty acid concentrations were low.  相似文献   

4.
A continuous coculture of four ruminal bacteria, Megasphaera elsdenii, Selenomonas ruminantium, Streptococcus bovis, and Lactobacillus sp. strain LB17, was used to study the effects of the ionophores monensin and tetronasin on the changes in ruminal microbial ecology that occur during the onset of lactic acidosis. In control incubations, the system simulated the development of lactic acidosis in vivo, with an initial overgrowth of S. bovis when an excess of glucose was added to the fermentor. Lactobacillus sp. strain LB17 subsequently became dominant as pH fell and lactate concentration rose. Both ionophores were able to prevent the accumulation of lactic acid and maintain a healthy non-lactate-producing bacterial population when added at the same time as an excess of glucose. Tetronasin was more potent in this respect than monensin. When tetronasin was added to the culture 24 h after glucose, the proliferation of lactobacilli was reversed and a non-lactate-producing bacterial population developed, with an associated drop in lactate concentration in the fermentor. Rises in culture pH and volatile fatty acid concentrations accompanied these changes. Monensin was unable to suppress the growth of lactobacilli; therefore, in contrast to tetronasin, monensin added 24 h after the addition of glucose failed to reverse the acidosis. Numbers of lactobacilli and lactate concentrations remained high, whereas pH and volatile fatty acid concentrations were low.  相似文献   

5.
The genus Pectinatus has been often reported in beer spoilage with off-flavours. The bacteria are strictly anaerobic, Gram-negative rods. Propionate and acetate are the main fermentation products from glucose in the two species belonging to the genus, P. cerevisiiphilus and P. frisingensis. Amino acids routinely present at a high level in beer were not growth substrates for both species, and a significant accumulation of succinate was observed with lactate as growth substrate. Both Pectinatus ssp. showed almost identical fermentation balances on glucose. Growth kinetics of both glucose-grown species were unchanged under a N2, H2 or 20% CO2-containing atmosphere. Combinations of culture medium pH values from pH 3·9 to pH 7·2, of glucose levels between 5 and 55 mmol l-1, and of lactate concentrations varied from 4 to 40 mmol l-1 demonstrated that biomass and volatile fatty acids production were proportional to glucose concentration for both Pectinatus species. A significant increase of volatile fatty acid production was measured for both species at the lowest pH values with a lactate or a glucose concentration increase. The maximum biomass production was observed at pH 6·2 for P. cerevisiiphilus , and between pH 4·5 and pH 4·9 for P. frisingensis. Glucose and lactate or pH value were dependent with regard to propionate and acetate production in P. frisingensis. On the other hand, the variations of these three parameters were independent with regard to biomass production for both strains, and to volatile fatty acids production for P. cerevisiiphilus. Addition of ethanol to glucose-grown cultures completely inhibited growth at 1·3 mol l-1 ethanol for P. cerevisiiphilus , and at 1·8 mol l-1 for P. frisingensis.  相似文献   

6.
We postulate that metabolic conditions that develop systemically during exercise (high blood lactate and high nonesterified fatty acids) are favorable for energy homeostasis of the heart during contractile stimulation. We used working rat hearts perfused at physiological workload and levels of the major energy substrates and compared the metabolic and contractile responses to an acute low-to-high work transition under resting versus exercising systemic metabolic conditions (low vs. high lactate and nonesterified fatty acids in the perfusate). Glycogen preservation, resulting from better maintenance of high-energy phosphates, was a consequence of improved energy homeostasis with high fat and lactate. We explained the result by tighter coupling between workload and total beta-oxidation. Total fatty acid oxidation with high fat and lactate reflected increased availability of exogenous and endogenous fats for respiration, as evidenced by increased long-chain fatty acyl-CoA esters (LCFA-CoAs) and by an increased contribution of triglycerides to total beta-oxidation. Triglyceride turnover (synthesis and degradation) also appeared to increase. Elevated LCFA-CoAs caused high total beta-oxidation despite increased malonyl-CoA. The resulting bottleneck at mitochondrial uptake of LCFA-CoAs stimulated triglyceride synthesis. Our results suggest the following. First, both malonyl-CoA and LCFA-CoAs determine total fatty acid oxidation in heart. Second, concomitant stimulation of peripheral glycolysis and lipolysis should improve cardiac energy homeostasis during exercise. We speculate that high lactate contributes to the salutary effect by bypassing the glycolytic block imposed by fatty acids, acting as an anaplerotic substrate necessary for high tricarbocylic acid cycle flux from fatty acid-derived acetyl-CoA.  相似文献   

7.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

8.
1. Caecal material of wild howler monkeys was analyzed by gas chromatography for evidence of fermentation activity and rates of production and absorption of volatile fatty acids. 2. Results showed a high rate of production of acetic acid and lesser production of propionic, butyric and isobutyric acids. The VFA content of the blood was increase in passage through the caecal vascular system. 3. We estimate that howler monkeys may obtain as much as 31% of their required daily energy from fermentation end products. 4. Energy rich fatty acids may be of particular importance to howlers when they are living on diets high in leaves, which have high cell wall contents and low contents of nonstructural carbohydrates.  相似文献   

9.
The objective of this study was to determine the effects of l-aspartate, fumarate, l-malate, and an Aspergillus oryzae fermentation extract (Amaferm) on growth on lactate as well as lactate uptake by Selenomonas ruminantium HD4. Growth of S. ruminantium in medium that contained 2 g of dl-lactate per liter was stimulated approximately twofold by 10 mM l-aspartate, fumarate, or l-malate after 24 h. Both l-aspartate and fumarate increased lactate uptake over 4-fold, while l-malate stimulated uptake over 10-fold. Amaferm enhanced lactate uptake at all concentrations tested (0.5 to 50 g/liter), and the 10-g/liter level increased uptake over 12-fold. A filter-sterilized Amaferm filtrate increased lactate uptake over sevenfold, and growth on lactate was stimulated over twofold by either 2 or 5% (vol/vol) Amaferm filtrate. The Amaferm filtrate also increased the production of acetate, propionate, total volatile fatty acids, and Y(lactate) from lactate-grown cells. Since the increase in propionate production was greater relative to acetate, a decrease in the acetate:propionate ratio was observed. The concentration of l-malate in the Amaferm filtrate was 1.45 mM, and it appeared that the l-malate content of Amaferm played a role in the stimulation of growth on lactate as well as lactate uptake by S. ruminantium treated with Amaferm.  相似文献   

10.
It is known that volatile fatty acids can inhibit growth of species of the family Enterobacteriaceae in vitro. However, whether these volatile fatty acids affect bacterial populations in the ceca of chickens is unknown. Therefore, a study was conducted to investigate if changes in volatile fatty acids in ceca of broiler chickens during growth affect bacterial populations. Results showed that members of the Enterobacteriaceae and enterococci are present in large numbers in 3-day-old broilers and start to decrease when broilers grow older. Lactobacilli are present in large numbers as well in 3-day-old broilers, but they remain stable during the growth of broilers. Acetate, butyrate, and propionate increase from undetectable levels in 1-day-old broilers to high concentrations in 15-day-old broilers, after which they stabilize. Significant negative correlations could be calculated between numbers of Enterobacteriaceae and concentrations of undissociated acetate, propionate, and butyrate. Furthermore, pure cultures of Enterobacteriaceae isolated from the ceca were grown in the presence of volatile fatty acids. Growth rates and maximal optical density decreased when these strains grew in the presence of increasing volatile fatty acid concentrations. It is concluded that volatile fatty acids are responsible for the reduction in numbers of Enterobacteriaceae in the ceca of broiler chickens during growth.  相似文献   

11.
Calcium depletion induced by perfusing livers with calcium-free buffer did not alter the rates of basal glucose production from pyruvate or from increasing concentrations of lactate. However, calcium deficiency selectively prevented the fatty acid-induced stimulation of gluconeogenesis from lactate. This effect is not related to the higher NAD redox potential consistently observed in Ca2(+)-deficient livers. On the other hand, octanoate was capable of inducing dose-dependent changes in the [pyruvate]0.5 in calcium-depleted livers perfused with lactate, ruling out that low cellular calcium content could perturb the mitochondrial transport of pyruvate. The observation that the effect of calcium deficiency can be overcome by supraphysiological concentrations of pyruvate supports the proposal that stimulation of the maximal capacity of the gluconeogenic pathway by fatty acid relies largely on the tricarboxylic acid cycle activity, restricted in calcium deficiency conditions.  相似文献   

12.
一株瘤胃源乳酸利用菌的分离鉴定及其体外代谢特性   总被引:3,自引:0,他引:3  
龙黎明  毛胜勇  苏勇  朱伟云 《微生物学报》2008,48(12):1571-1577
【目的】从饲喂高精料的本地山羊瘤胃内分离到一株利用乳酸并能产生大量丙酸的菌株L9,并进一步研究了该菌在调控瘤胃微生物发酵中的作用。【方法】采用厌氧培养技术,结合形态、生理生化特性和16SrRNA基因序列分析结果。【结果】该菌株被鉴定为反刍兽新月形单胞菌(Selenomonas ruminantium)。该菌株体外代谢特性研究表明,L9可利用乳酸作为唯一碳源,该菌在24h内可对90mmol/L的乳酸完全降解。体外摸拟瘤胃急性酸中毒的发酵试验结果表明,以淀粉为底物时,与对照组相比,添加菌株L9可显著降低瘤胃微生物体外培养体系中乳酸浓度,提高pH值,提高总挥发性脂肪酸和丙酸浓度,并显著降低乙酸与丙酸的浓度比(P〈0.05)。【结论】结果显示,菌株L9是一株可代谢乳酸,促进丙酸生成,提高总挥发性脂肪酸浓度的有益瘤胃细菌。  相似文献   

13.
A highly specific medium was developed for the enumeration of lactate-utilizing bacteria in the rumen of sheep. This medium, which contained 2.0% lactate, 2.0% Trypticase, 0.2% yeast extract, and volatile fatty acids, hemin, and trace elements in place of rumen fluid, enabled high counts (42 × 107 to 190 × 107/g of ingesta) of lactate-utilizing bacteria to be made with a high degree of specificity (96%). The medium also supported the growth of all species of predominant lactate-utilizing bacteria reported to occur in the rumen and thus is of importance for ecological studies where the incidence and influence of the different species on lactate metabolism under changing conditions in the rumen cannot be predicted. The survival rate of isolates was increased from 60 to 96% by addition to the modified maintenance medium of 40% rumen fluid in place of the volatile fatty acids, hemin, and trace elements used in the counting medium. These results, together with the slow growth of colonies in roll bottles, showed that, although highly selective, the counting medium was not optimal for the types selected.  相似文献   

14.
Lactate production in the perfused rat liver   总被引:10,自引:9,他引:1       下载免费PDF全文
1. In aerobic conditions the isolated perfused liver from well-fed rats rapidly formed lactate from endogenous glycogen until the lactate concentration in the perfusion medium reached about 2mm (i.e. the concentration of lactate in blood in vivo) and then production ceased. Pyruvate was formed in proportion to the lactate, the [lactate]/[pyruvate] ratio remaining between 8 and 15. 2. The addition of 5mm- or 10mm-glucose did not affect lactate production, but 20mm- and 40mm-glucose greatly increased lactate production. This effect of high glucose concentration can be accounted for by the activity of glucokinase. 3. The perfused liver released glucose into the medium until the concentration was about 6mm. When 5mm- or 10mm-glucose was added to the medium much less glucose was released. 4. At high glucose concentrations (40mm) more glucose was taken up than lactate and pyruvate were produced; the excess of glucose was probably converted into glycogen. 5. In anaerobic conditions, livers of well-fed rats produced lactate at relatively high rates (2.5mumol/min per g wet wt.). Glucose was also rapidly released, at an initial rate of 3.2mumol/min per g wet wt. Both lactate and glucose production ceased when the liver glycogen was depleted. 6. Addition of 20mm-glucose increased the rate of anaerobic production of lactate. 7. d-Fructose also increased anaerobic production of lactate. In the presence of 20mm-fructose some glucose was formed anaerobically from fructose. 8. In the perfused liver from starved rats the rate of lactate formation was very low and the increase after addition of glucose and fructose was slight. 9. The glycolytic capacity of the liver from well-fed rats is equivalent to its capacity for fatty acid synthesis and it is pointed out that hepatic glycolysis (producing acetyl-CoA in aerobic conditions) is not primarily an energy-providing process but part of the mechanism converting carbohydrate into fat.  相似文献   

15.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

16.
Summary The main fermentation end products in batch culture (unlimited glucose supply) of Clostridium barkeri were butyrate and lactate. The specific rate of butyrate production was linearly proportional to the growth rate while the specific rate of lactate production increased at low growth rates. In a glucose limited chemostat culture butyrate production was partly growth associated while acetate and lactate production was growth associated. Lactate was, however, only produced at high dilution rates. By varying the glucose concentration in the inflowing medium it was shown that lactate production was stimulated by a high feeding rate of the carbon source. These results are discussed in view of the fructose-1,6-diphosphate dependent lactate dehydrogenase activity in many other organisms.  相似文献   

17.
The nutritional requirements of Selenomonas ruminantium HD4 for growth on glucose, glycerol, or lactate were investigated to clarify the results of previous studies and to relate the nutrition of the organism to its physiology. The organism required l-aspartate, CO(2), p-aminobenzoic acid, and biotin for growth on a lactate-salts medium that contained small amounts of dithiothreitol. Aspartate could be replaced by l-malate or fumarate but not by succinate or l-asparagine. Requirements for growth with glycerol as an energy source were similar, except that aspartate was not required. With glucose as the energy source, neither aspartate nor p-aminobenzoic acid was required, but a requirement for volatile fatty acids, which could be met by n-valerate, was observed. CO(2) was required for growth on lactate or glycerol but not on glucose on complex media containing Trypticase and yeast extract. Sulfide could be used as the sole source of sulfur.  相似文献   

18.
It is known that volatile fatty acids can inhibit growth of species of the family Enterobacteriaceae in vitro. However, whether these volatile fatty acids affect bacterial populations in the ceca of chickens is unknown. Therefore, a study was conducted to investigate if changes in volatile fatty acids in ceca of broiler chickens during growth affect bacterial populations. Results showed that members of the Enterobacteriaceae and enterococci are present in large numbers in 3-day-old broilers and start to decrease when broilers grow older. Lactobacilli are present in large numbers as well in 3-day-old broilers, but they remain stable during the growth of broilers. Acetate, butyrate, and propionate increase from undetectable levels in 1-day-old broilers to high concentrations in 15-day-old broilers, after which they stabilize. Significant negative correlations could be calculated between numbers of Enterobacteriaceae and concentrations of undissociated acetate, propionate, and butyrate. Furthermore, pure cultures of Enterobacteriaceae isolated from the ceca were grown in the presence of volatile fatty acids. Growth rates and maximal optical density decreased when these strains grew in the presence of increasing volatile fatty acid concentrations. It is concluded that volatile fatty acids are responsible for the reduction in numbers of Enterobacteriaceae in the ceca of broiler chickens during growth.  相似文献   

19.
The genus Pectinatus includes strictly anaerobic Gram-negative non-spore-forming mesophilic bacteria often referred to as beer-spoilage bacteria. Pectinatus frisingensis was chosen as the reference strain. The organisms were grown in batch cultures under stringent anaerobic conditions in a synthetic medium and with pH regulation. Various glucose and lactate concentrations were used, and a low inoculum reproduced spoilage conditions in bottled beer. Propionate and acetate are the major compounds responsible for the off-flavour of beer. Gompertz curves were fitted to acid-biomass production and glucose consumption; thereby the lag-phase, production rate and final concentrations were derived. Volatile fatty acids production began 19 h after biomass growth. There was no lineareffect of substrate on final concentration of propionate, acetate and biomass. An additive model is proposed for the prediction of bacterial growth and acid production on both glucose and lactate.  相似文献   

20.
Effect of Antimicrobial Agents on Livestock Waste Emissions   总被引:3,自引:0,他引:3  
Various antimicrobial agents were evaluated with the purpose of reducing the microbial fermentation in stored cattle waste and the resulting odor emissions. Duplicate sealed 2-L flasks with 500 ml waste slurry, with and without antimicrobial inhibitors, were used to measure the production of short-chain volatile fatty acids, lactate, and total fermentation gas over 27–30 days. A combination of chlorhexidine diacetate (2 mM), iodoacetate (2 mM), and α-pinene (3.8 mM) reduced gas production 80% (1000 ml to 200 ml) and total volatile fatty acid production 50% (145 mM to 72 mM). Pinene had little antimicrobial effect; rather, it served as an effective masking agent, giving the waste a less offensive odor. A combination of chlorhexidine diacetate and the deaminase inhibitor, diphenyliodonium chloride (1.3 mM) had a similar effect in reducing short-chain volatile fatty acid production (145 mM to 80 mM). It is concluded that a combination of antimicrobial agents may be useful in controlling odor emissions and conserving organic matter in livestock wastes, therefore providing a potentially more useful byproduct waste when used as plant fertilizer. Received: 22 November 1999 / Accepted: 5 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号