首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Different animal models are used as fracture models in orthopaedic research prior to implant use in humans, although biomechanical forces can differ to a great extend between species due to variable anatomic conditions, particularly with regard to the gait. The rabbit is an often used fracture model, but biomechanical data are very rare. The objective of the present study was to measure axial forces, bending moments, and bending axis directly in the rabbit tibia in vivo. The following hypothesis was tested: Axial forces and bending moments in the mid-diaphysis of rabbit tibia differ from other experimental animals or indirectly calculated data.

Methods

A minifixateur system with 4 force sensors was developed and attached to rabbit tibia (n = 4), which were subsequently ostectomised. Axial forces, bending moments and bending angles were calculated telemetrically during weight bearing in motion between 6 and 42 days post operation.

Results

Highest single values were 201% body weight [% bw] for axial forces and 409% bw cm for bending moments. Whereas there was a continous decrease in axial forces over time after day 10 (P = 0.03 on day 15), a decrease in bending moments was inconsistent (P = 0.03 on day 27). High values for bending moments were frequently, but not consistently, associated with high values for axial forces.

Conclusion

Axial forces in rabbit tibia exceeded axial forces in sheep, and differed from indirectly calculated data. The rabbit is an appropriate fracture model because axial loads and bending moments in rabbit tibia were more closely to human conditions than in sheep tibia as an animal model.  相似文献   

2.
Experiments were performed on two patients with custom-made instrumented massive proximal femoral prostheses implanted after tumour resection. In vivo axial forces transmitted along the prostheses were telemetered during level walking, single- and double-leg stance, and isometric exercises of the hip muscles. These activities varied the lever arms available to the external loads: minimum for double-leg stance and maximum for hip isometric exercises. Kinematic, force plate, EMG and telemetered force data were recorded simultaneously. The force magnification ration (FMR; the ratio of the telemetered axial force to the external force) was calculated. The FMRs ranged from 1.3 (during double-leg stance) to 29.8 (during abductors test), indicating that a major part of the axial force in the long bones is a response to muscle activity, the strength of which depends on the lever arms available to the external loads. From these results, it was shown that the bulk of the bending moment along limbs is transmitted by a combination of tensile forces in muscles and compressive forces in bones, so moments transmitted by the bones are smaller than the limb moments. It was concluded that appropriate simulation of muscle forces is important in experimental or theoretical studies of load transmission along bones.  相似文献   

3.
The striking variation in limb proportions within the genus Homo during the Pleistocene has important implications for understanding biomechanics in the later evolution of human bipedalism, because longer limbs and limb segments may increase bending moments about bones and joints. This research tested the hypothesis that long lower limbs and tibiae bring about increases in A-P bending forces on the lower limb during the stance phase of human walking. High-speed 3-D video data, force plates, and motion analysis software were used to analyze the walking gait of 27 modern human subjects. Limb length, as well as absolute and relative tibia length, were tested for associations with a number of kinetic and kinematic variables. Results show that individuals with longer limbs do incur greater bending moments along the lower limb during the first half of stance phase. During the second half of stance, individuals moderate bending moments through a complex of compensatory mechanisms, including keeping the knee in a more extended position. Neither absolute nor relative tibia length had any effect on the kinetic or kinematic variables tested. If these patterns apply to fossil Homo, groups with relatively long limbs (e.g. H. ergaster or early H. sapiens) may have experienced elevated bending forces along the lower limb during walking compared to those with relatively shorter limbs (e.g. the Neandertals). These increased forces could have led to greater reinforcement of joints and diaphyses. These results must be considered when formulating explanations for variation in limb morphology among Pleistocene hominins.  相似文献   

4.
Principal stresses acting in the midshafts of the radius and metacarpus of the horse were determined from in vivo strain recordings during locomotion and jumping. Ground forces and limb position were also recorded. Over a range of speed and gait the radius was subjected to considerable bending, whereas the metacarpus was loaded primarily in axial compression. As a result, peak stresses acting in the radius (maximum: –45 MN/m2) were consistently 50% greater than those acting in the metacarpus (maximum: –31 MN/m2). The increase in peak bone stress (radius: 119% and metacarpus; 114%) with increasing speed was matched by a 103% increase in the mass-specific vertical force ( A v) exerted on the limb and a 55% decline in duty factor of the limb. The forelimb was closely aligned with the direction of ground force during the support phase (<9° when peak force acted) to minimize bending forces exerted on the distal limb bones. Hence, bending of the radius resulted mainly from axial forces acting about its longitudinal curvature. This was in contrast to the metacarpus, which is a much straighter bone.
Significantly greater stresses were recorded in each bone during jumping: –81 MN/m2 in the radius and –53 MN/m2 in the metacarpus. While the distribution of loading in the radius was similar to that during steady state locomotion, greater variability in the magnitude and/or distribution of metacarpal loading was observed between animals, largely due to differences in the orientation of the limb during takeoff and landing. These data demonstrate that the horse, despite its large size, maintains a safety factor of nearly 3–4 during peak performance.  相似文献   

5.
Principal stresses acting in the midshaft cortices of the tibia and metatarsus of the horse were determined from in vivo rosette strain gauge recordings for overground locomotion at different gaits, as well as for jumping and acceleration. Bone stresses were correlated with limb kinematics and ground reaction forces. The results for these two hind limb bones were compared to earlier determinations of locomotor stress in the forelimb radius and metacarpus (Biewener, Thomason & Lanyon, 1983b). Peak stresses generally increased with increasing speed; however, because of greater bending, stresses in the tibia were substantially higher (45%) than in the metatarsus over the range of steady state speeds. Bending of the tibia resulted from significant off-axis loading by the ground reaction force. In contrast, the metatarsus was loaded in compression due to its close alignment with the ground reaction force. Peak stresses as high as - 53 MPa (caudal cortex) in the tibia and -38 MPa (plantar cortex) in the metatarsus acted at a canter. Increased skeletal stress was matched by a corresponding increase in ground reaction force and a decrease in hind limb duty factor. In both bones, peak stresses were significantly greater and differed in their distribution during jumping and acceleration, compared to peak stresses during steady speed locomotion. Maximal values of - 126 MPa (cranial cortex) in the tibia and - 117 MPa (dorsal cortex) in the metatarsus were developed during jumping. These stresses are similar in magnitude to those reported for a range of different sized mammals during strenuous activity and correspond to a safety factor to yield failure of 1.5 to 3. Though generally consistent within an individual bone, the distribution and magnitude of stresses varied about 20% among individuals. This variation was greater for the metatarsus because of its lesser curvature, which diminishes the bone's ability to control for bending in a fixed direction.  相似文献   

6.
Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living.Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10–20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range ?2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between ?0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between ?1.1% BWm (internal torque) and 0.53% BWm (external torque).The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants.  相似文献   

7.
The standard differential scaling of proportions in limb long bones (length against circumference) was applied to a phylogenetically wide sample of the Proboscidea, Elephantidae and the Asian (Elephas maximus) and African (Loxodonta africana) elephants. In order to investigate allometric patterns in proboscideans and terrestrial mammals with parasagittal limb kinematics, the computed slopes between long bone lengths and circumferences (slenderness exponents) were compared with published values for mammals, and studied within a framework of the theoretical models of long bone scaling under gravity and muscle forces. Limb bone allometry in E. maximus and the Elephantidae is congruent with adaptation to bending and/or torsion induced by muscular forces during fast locomotion, as in other mammals, whereas the limb bones in L. africana appear to be adapted for coping with the compressive forces of gravity. Hindlimb bones are therefore more compliant than forelimb bones, and the resultant limb compliance gradient in extinct and extant elephants, contrasting in sign to that of other mammals, is shown to be a new important locomotory constraint preventing elephants from achieving a full‐body aerial phase during fast locomotion. Moreover, the limb bone pattern of African elephants, indicating a noncritical bone stress not increasing with increments in body weight, explains why their mean and maximal body masses are usually above those for Asian elephants. Differences in ecology may be responsible for the subtle differences observed in vivo between African and Asian elephants, but they appear to be more pronounced when revealed via mechanical patterns dictated by limb bone allometry. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 16–29.  相似文献   

8.
Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.  相似文献   

9.
Some of the most significant traits of the fossil Limnopithecus parallel those of modern gibbons and large cebids. Several hypotheses have been proposed in the attempt to explain this convergence: taxonomic relationship, moderate body mass (in contrast to the great apes), and similar locomotor habits, or, more precisely, adaptations to brachiation or semibrachiation. A biomechanical analysis of the Limnopithecus remains did not, however, yield satisfying results. Changes in stress patterns caused by variations of body weight have been investigated theoretically, therefore, under the assumptions of constant body posture and constant arrangement of musculature. Compressive forces and bending moments on limb bones are linear functions of body weight. The resistance of a bone to compression usually increases with the square of the diameter. The resistance to bending (more critical than compression) increases with the third power of the bone diameter, rates of increase greater than that of body weight to limb diameter. Thus, the heavier animal may possess relatively more slender limb bones. This surprising result is supported by some empirical data taken from the literature.  相似文献   

10.
The area moment of inertia of the tibia: A risk factor for stress fractures   总被引:1,自引:0,他引:1  
In a prospective study of stress fractures among Israeli infantry recruits, the area moment of inertia of the tibia was found to have a statistically significant correlation with the incidence of tibial, femoral and total stress fractures. Recruits with "low" area moments of inertia of the tibia were found to have higher stress fracture morbidity than those with "high" area moments of inertia. The best correlation was obtained when the area moment of inertia was calculated about the AP axis of bending at a cross-sectional level corresponding to the narrowest tibial width on lateral X-rays, a point which is at the distal quarter of the tibia. This finding indicates that bending forces about the approximate AP axis are an important causal factor for tibial and many other stress fractures. The bone's bending strength, or ability to resist bending moments, as measured by the area moment of inertia, helps determine risk to stress fracture.  相似文献   

11.
To enable a quantification of net joint moments and joint reaction forces, indicators of joint loading, this study aimed to locate the mediolateral joint axes of rotation and establish the body segment parameters of the limbs of pigs (Sus scrofa). To locate the joint axes of rotation the scapulohumeral, humeroradial, carpal complex, metacarpophalangeal, coxofemoral, femorotibial, tarsal, and metatarsophalangeal joints from 12 carcasses were studied. The joints were photographed in three positions, bisecting lines drawn at fixed landmarks with their intersection marking the joint axes of rotation. The body segment parameters, i.e. the segment mass, center of mass and moment of inertia were measured on the humerus, radius/ulna, metacarpus, forepastern, foretoe, femur, tibia, metatarsus, hindpastern, and hindtoe segments from five carcasses. The segments were weighed, and their center of mass was found by balancing them. The moments of inertia of the humerus, radius/ulna, femur and tibia were found by rotating the segments. The moments of inertia of the remaining segments were calculated. Generally, the joint axes of rotation were near the attachment site of the lateral collateral ligaments. The forelimb, with segments taken as one, was significantly lighter and shorter than the hindlimb (P < 0.001). In all segments the center of mass was located 31 to 50% distal to the proximal segment end. The segment mass decreased with distance from the trunk, as did the segment moment of inertia. The results may serve as reference on the location of the joint axes of rotation and on the body segment parameters for inverse dynamic modeling of pigs.  相似文献   

12.
While there are a growing number of increasingly complex methodologies available to model geometry and material properties of bones, these models still cannot accurately describe physical behaviour of the skeletal system unless the boundary conditions, especially muscular loading, are correct. Available in vivo measurements of muscle forces are mostly highly invasive and offer no practical way to validate the outcome of any computational model that predicts muscle forces. However, muscle forces can be verified indirectly using the fundamental property of living tissue to functional adaptation and finite element (FE) analysis. Even though the mechanisms of the functional adaptation are not fully understood, its result is clearly seen in the shape and inner structure of bones. The FE method provides a precise tool for analysis of the stress/strain distribution in the bone under given loading conditions. The present work sets principles for the determination of the muscle forces on the basis of the widely accepted view that biological systems are optimized light-weight structures with minimised amount of unloaded/underloaded material and hence evenly distributed loading throughout the structure. Bending loading of bones is avoided/compensated in bones under physiological loading. Thus, bending minimisation provides the basis for the determination of the musculoskeletal system loading. As a result of our approach, the muscle forces for a human femur during normal gait and sitting down (peak hip joint force) are obtained such that the bone is loaded predominantly in compression and the stress distribution in proximal and diaphyseal femur corresponds to the material distribution in bone.  相似文献   

13.

Finite element models of bones can be generated based on images obtained non-invasively in the clinic. One area where such models may prove useful is in the assessment of fracture healing of long bones. To establish the feasibility of such a proposal, a three dimensional finite element model of a fractured tibia was generated, and a model of tissue differentiation and bone regeneration was used to simulate the progress of healing under two different loading magnitudes. Healing is successful under the lower load and unsuccessful under the higher load--this proves that the model has the potential to identify loads that would cause healing to fail. Following a proposal by Richardson et al. [J. Bone Jt Surg. Vol. 76B (1994) pp. 389-394] that the bending stiffness can be used to assess the extent of healing, the bending stiffness was computed during healing--it was shown that the stiffness changed in a similar manner that observed clinically. In conclusion, the paper establishes that 3D computer simulation could be a tool for assessment of the fracture healing under different orthopedic treatments.  相似文献   

14.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

15.
Long bone loading histories are commonly evaluated using a beam model by calculating cross-sectional second moments of areas (SMAs). Without in vivo strain data, SMA analyses commonly make two explicit or implicit assumptions. First, while it has long been known that axial compression superimposed on bending shifts neutral axes away from cross-sectional area centroids, most analyses assume that cross-sectional properties calculated through the area centroid approximate cross-sectional strength. Second, the orientation of maximum bending rigidity is often assumed to reflect the orientation of peak or habitual bending forces the bone experiences. These assumptions are tested in sheep in which rosette strain gauges mounted at three locations around the tibia and metatarsal midshafts measured in vivo strains during treadmill running at 1.5 m/sec. Calculated normal strain distributions confirm that the neutral axis of bending does not run through the midshaft centroid. In these animals, orientations of the principal centroidal axes around which maximum SMAs (Imax) are calculated are not in the same planes in which the bones experienced bending. Cross-sectional properties calculated using centroidal axes have substantial differences in magnitude (up to 55%) but high correlations in pattern compared to cross-sectional properties calculated around experimentally determined neutral axes. Thus interindividual comparisons of cross-sectional properties calculated from centroidal axes may be useful in terms of pattern, but are subject to high errors in terms of absolute values. In addition, cross-sectional properties do not necessarily provide reliable data on the orientations of loads to which bones are subjected.  相似文献   

16.
The aim of the present study was to characterize a liposome-based benzocaine (BZC) formulation designed for topical use on the oral mucosa and to evaluate its in vitro retention and permeation using the Franz-type diffusion cells through pig esophagus mucosa. To predict the effectiveness of new designed formulations during preclinical studies, a correlation between in vitro assays and in vivo efficacy was performed. Liposomal BZC was characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and morphology. Liposomal BZC (BL10) was incorporated into gel formulation and its performances were compared to plain BZC gel (B10) and the commercially available BZC gel (B20). BL10 and B10 presented higher flux and retention on pig esophagus mucosa with a shorter lag time, when compared to B20. BZC flux was strongly correlated with in vivo anesthetic efficacy, but not with topical anesthesia duration. The retention studies did not correlate with any of the in vivo efficacy parameters. Thus, in vitro permeation study can be useful to predict anesthetic efficacy during preclinical tests, because a correlation between flux and anesthetic efficacy was observed. Therefore, in vitro assays, followed by in vivo efficacy, are necessary to confirm anesthetic performance.  相似文献   

17.
Hill-type models are commonly used to estimate muscle forces during human and animal movement—yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation–deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with “differential” activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r2, was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r2=0.26–0.51), and all exhibited some errors (RMSE=9.63–32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks.  相似文献   

18.
Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.  相似文献   

19.
The form and function of the musculo-skeletal system is closely related to the forces acting in its components. Significant forces are present in the long bones, but their magnitudes have so far only been estimated from mathematical models. Fracture fixation by means of metal implants provides an opportunity to measure the implant-born forces and to estimate the long bone forces before healing occurs. The load changes during fracture healing may provide additional information. Therefore, a telemetrized, interlocking femoral nail for wireless transmission of forces and moments acting across the fracture site was developed. The design was based on the geometry and material of a 16 mm AO nail with a circular, closed cross-section allowing full protection of the electronic circuits from the body fluids. After careful testing, it was implanted in a 33-year-old patient who had sustained a multifragmentary fracture of the left femur. Measurements at a rate of approx. 0.4 Hz were performed in different patient postures between the 2nd and 26th postoperative week. Significant axial forces and bending moments were measured during several activities such as sitting, unsupported leg elevation and partial weight bearing in a standing position. Forces orthogonal to the nail axis remained small. The reductions of the implant loads due to fracture consolidation were in the order of 50%. Dynamization of the nail did not change the forces. Even though the telemetry system did not allow for dynamic measurements and the results presented here provide data from one subject only, the new information will be useful with respect to implant design, biomechanics of fracture fixation and evaluation of healing progression.  相似文献   

20.
Synopsis To examine the relation between morphology and performance, notochordal morphology was correlated with notochordal mechanics and with steady swimming motions in white sturgeon, Acipenser transmontanus. In a still-water tank, motions of four sturgeon varied with changes in swimming speed and axial position along the body. For a 1..34 m sturgeon, slow and fast swimming modes were distinguished, with speeds at the fast mode more than two times those at the slow mode without changes in tailbeat frequency. This increase in speed is correlated with an increase in the body's maximal midline curvature (m–1), suggesting a role for curvature-related mechanical properties of the notochord. Maximal midline curvature also varied with axial position, and surprisingly was uncorrelated with axial changes in the notochord's cross-sectional shape - as measured by height, width, inner diameter, and lateral thickness of the sheaths. On the other hand, maximal midline curvature was negatively correlated with the axial changes in the notochord's angular stiffness (N m rad–1) and change in internal pressure (% change from baseline of 58.6 kPa), both of which were measured during in vitro bending tests. In vivo curvature and in vitro angular stiffness were then used to estimate the bending moments (Nm) in the notochord during swimming. In the precaudal notochord, the axial pattern of maximal stiffness moments was congruent with the pattern of maximal notochordal curvature in the precaudal region, but in the caudal notochord maximal angular stiffness was located craniad to maximal curvature. One interpretation of this pattern is that the precaudal notochord resists bending moments generated by the muscles and that the caudal notochord resists bending moments generated by hydrodynamic forces acting on the tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号