首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual features of a recombinant apple alpha-farnesene synthase   总被引:3,自引:0,他引:3  
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.  相似文献   

2.
In plants, sesquiterpenes of different structural types are biosynthesized from the isoprenoid intermediate farnesyl diphosphate. The initial reaction of the biosynthesis is catalyzed by sesquiterpene cyclases (synthases). In Artemisia annua L. (annual wormwood), a number of such sesquiterpene cyclases are active. We have isolated a cDNA clone encoding one of these, amorpha-4,11-diene synthase, a putative key enzyme of artemisinin biosynthesis. This clone contains a 1641-bp open reading frame coding for 546 amino acids (63.9 kDa), a 12-bp 5'-untranslated end, and a 427-bp 3'-untranslated sequence. The deduced amino acid sequence is 32 to 51% identical with the sequence of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (97.5%) and oxygenated (2.5%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as (E)-beta-farnesene (0.8%), amorpha-4,11diene (91.2%), amorpha-4,7(11)-diene (3.7%), gamma-humulene (1.0%), beta-sesquiphellandrene (0.5%), and an unknown olefin (0.2%) and the oxygenated sesquiterpenes as amorpha-4-en-11-ol (0.2%) (tentatively), amorpha-4-en-7-ol (2.1%), and alpha-bisabolol (0.3%) (tentatively). Using geranyl diphosphate as substrate, amorpha-4,11-diene synthase did not produce any monoterpenes. The recombinant enzyme has a broad pH optimum between 7.5 and 9.0 and the Km values for farnesyl diphosphate, Mg2+, and Mn2+ are 0.9, 70, and 13 microM, respectively, at pH 7.5. A putative reaction mechanism for amorpha-4,11-diene synthase is suggested.  相似文献   

3.
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.  相似文献   

4.
Green S  Baker EN  Laing W 《FEBS letters》2011,585(12):1841-1846
Plant sesquiterpene and hemiterpene synthases in the monoterpene synthase dominated TPS-b subgroup are thought to have evolved independently from a monoterpene synthase ancestor. A TPS-b sesquiterpene synthase from apple (MdAFS1), which predominantly produces α-farnesene, can also synthesize the monoterpene (E)-β-ocimene. The dual activity offered a functional link to an ancestral MdAFS1 enzyme and a rational basis for investigation of the evolution of TPS-b sesquiterpene enzymes. Protein modelling and mutagenesis analysis of the MdAFS1 active site identified a non-synonymous nucleotide substitution that could account for the requisite shift in substrate specificity necessary for the emergence of its sesquiterpene activity during the evolution of the TPS-b enzymes.  相似文献   

5.
(-)-(4S)-limonene synthase (LS) and (-)-(4S)-limonene/(-)-(1S, 5S)-alpha-pinene synthase (LPS) from grand fir (Abies grandis) exhibit nearly 91% sequence identity (93% similarity) at the amino acid level, yet produce very different mixtures of monoterpene olefins. To elucidate critical amino acids involved in determining monoterpene product distribution, a combination of domain swapping and reciprocal site-directed mutagenesis was carried out between these two enzymes. Exchange of the predicted helix D through F region in LS gave rise to an LPS-like product outcome, whereas reciprocal substitutions of four amino acids in LPS (two in the predicted helix D and two in the predicted helix F) altered the product distribution to that intermediate between LS and LPS, and resulted in a 5-fold increase in relative velocity. These results, in conjunction with modeling of the two enzymes, suggest that amino acids in the predicted D through F helix regions are critical for product determination.  相似文献   

6.
Sesquiterpene cyclases (synthases) catalyze the conversion of the isoprenoid intermediate farnesyl diphosphate to various sesquiterpene structural types. In plants, many sesquiterpenes are produced as defensive chemicals (phytoalexins) or mediators of chemical communication (i.e., pollinator attractants). A number of sesquiterpene synthases are present in Artemisia annua L. (annual wormwood). We have isolated a cDNA clone encoding one of these, epi-cedrol synthase. This clone contains a 1641-bp open reading frame coding for 547 amino acids (63.5 kDa), a 38-bp 5'-untranslated end, and a 272-bp 3'-untranslated sequence. The deduced amino acid sequence was 32 to 43% identical with the sequences of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (3%) and oxygenated (97%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as alpha-cedrene (57% of the olefins), beta-cedrene (13%), (E)-beta-farnesene (5%), alpha-acoradiene (1%), (E)-alpha-bisabolene (8%), and three unknown olefins (16%) and the oxygenated sesquiterpenes (97% of total sesquiterpene generated, exclusive of farnesol and nerolidol) as cedrol (4%) and epi-cedrol (96%). epi-Cedrol synthase was not active with geranylgeranyl diphosphate as substrate, whereas geranyl diphosphate was converted to monoterpenes by the recombinant enzyme at a rate of about 15% of that observed with farnesyl diphosphate as substrate. The monoterpene olefin products are limonene (45%), terpinolene (42%), gamma-terpinene (8%), myrcene (5%), and alpha-terpinene (2%); a small amount of the monoterpene alcohol terpinen-4-ol is also produced. The pH optimum for the recombinant enzyme is 8.5-9.0 (with farnesyl diphosphate as substrate) and the K(m) values for farnesyl diphosphate are 0.4 and 1.3 microM at pH 7. 0 and 9.0, respectively. The K(m) for Mg(2+) is 80 microM at pH 7.0 and 9.0.  相似文献   

7.
Structure and evolution of linalool synthase   总被引:10,自引:0,他引:10  
Plant terpene synthases constitute a group of evolutionarily related enzymes. Within this group, however, enzymes that employ two different catalytic mechanisms, and their associated unique domains, are known. We investigated the structure of the gene encoding linalool synthase (LIS), an enzyme that uses geranyl pyrophosphate as a substrate and catalyzes the formation of linalool, an acyclic monoterpene found in the floral scents of many plants. Although LIS employs one catalytic mechanism (exemplified by limonene synthase [LMS]), it has sequence motifs indicative of both LMS-type synthases and the terpene synthases employing a different mechanism (exemplified by copalyl diphosphate synthase [CPS]). Here, we report that LIS genes analyzed from several species encode proteins that have overall 40%-96% identity to each other and have 11 introns in identical positions. Only the region encoding roughly the last half of the LIS gene (exons 9-12) has a gene structure similar to that of the LMS-type genes. On the other hand, in the first part of the LIS gene (exons 1-8), LIS gene structure is essentially identical to that found in the first half of the gene encoding CPS. In addition, the level of similarity in the coding information of this region between the LIS and CPS genes is also significant, whereas the second half of the LIS protein is most similar to LMS-type synthases. Thus, LIS appears to be a composite gene which might have evolved from a recombination event between two different types of terpene synthases. The combined evolutionary mechanisms of duplication followed by divergence and/or "domain swapping" may explain the extraordinarily large diversity of proteins found in the plant terpene synthase family.  相似文献   

8.
Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.  相似文献   

9.
2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.  相似文献   

10.
Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.  相似文献   

11.
Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase.  相似文献   

12.
Artemisia annua, an indigenous plant to Korea, contains an antimalarial sesquiterpene, artemisinin. The first committed step of artemisinin biosynthesis is the cyclization of farnesyl diphosphate by a sesquiterpene synthase to produce an amorphane-type ring system. The aims of this research were to molecularly clone and express amorpha-4,11-diene synthase for metabolic engineering. PCR amplification of genomic DNA with a pair of primers, designed from the conserved regions of sesquiterpene synthases of several plants, produced a 184-bp DNA fragment. This fragment was used in Northern blot analysis as a probe, showing approximately 2.2 kb of a single band. Its sequence information was used to produce 2106 bp of a full-length cDNA sequence including 1641 bp of open reading frame for 546 amino acids (kcs12) through a rapid amplification of cDNA ends (RACE). The deduced amino acid sequence displayed 36% identity with 5-epi-aristolochene synthase of Nicotiana tabacum. A soluble fraction of Escherichia coli harboring kcs12 catalyzed the cyclization of farnesyl diphosphate to produce a sesquiterpene, which was identified through GC-MS analysis as amorpha-4,11-diene.  相似文献   

13.
Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.  相似文献   

14.
A newly isolated gene from Agrobacterium tumefaciens (A. tumefaciens), which encoded a decaprenyl diphosphate synthase, was cloned in Escherichia coli (E. coli), and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1077 bp capable of encoding a 358-amino-acid protein with a calculated isoelectric point of pH 5.16 and a molecular mass of 38 960 Da. The primary structure of the enzyme shared significant homology with prenyl diphosphate synthases from various sources. The deduced amino acid sequence included oligopeptide DDxxD aspartate-rich domains conserved in the majority of prenyl diphosphate synthases. High levels of the active enzyme were expressed in the soluble fraction and were readily purified to homogeneity by Ni-NTA chromatography. E. coli JM109 harboring the dps gene produced ubiquinone-10 in addition to endogenous ubiquinone-8, while E. coli JM109 harboring the dps gene mutated on the DDxxD domain lost the ability to produce ubiquinone-10, which suggests that the A. tumefaciens dps gene is functionally expressed in E. coli and that it encodes a decaprenyl diphosphate synthase.  相似文献   

15.
Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multistep reaction cascades. Fidelity and promiscuity in this chemistry (whether a terpenoid synthase generates one or several products), depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and gamma-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of alpha-helical folds shared by terpenoid synthases in all forms of life.  相似文献   

16.
Stilbene and chalcone synthases are related polyketide synthases which use the same substrates but form different products. The environment of the condensing active site cysteine is highly conserved, except for the positions -2 and -3. All chalcone synthases contain Gln-Gln and prefer 4-coumaroyl-CoA as starter CoA ester, while the two known stilbene synthases contain Gln-His or His-Gln (preference phenylpropionyl-CoA and 4-coumaroyl-CoA, respectively). We investigated whether the presence and/or position of the histidine influences the substrate preference and the product specificity (stilbene or chalcone). The two amino acid motifs in the chalcone synthase from Pinus sylvestris (Gln-Gln) and in the stilbene synthases from P. sylvestris (Gln-His) and Arachis hypogaea (His-Gln) were changed by site-directed mutagenesis into all sequence combinations as found in the natural enzymes. Assays with the mutant proteins showed that the histidine does not determine the product specificity. With the chalcone and the stilbene synthase from P. sylvestris, any sequence deviation reduced the activity without marked effects on the substrate preference. The stilbene synthase from A. hypogaea was different. The change from His-Gln to Gln-His abolished enzyme activity almost completely with all three substrates. The change to Gln-Gln selectively reduced the activity with 4-coumaroyl-CoA, and the kinetic analysis indicated a slight increase in Km and a 3-fold reduction of Vmax, when compared with the parent enzyme. This converted the enzyme from a resveratrol-forming into a dihydropinosylvin-forming stilbene synthase.  相似文献   

17.
The Bahamian octocoral Pseudopterogorgia elisabethae is the source of pseudopterosins, diterpene glycosides with potent anti-inflammatory activity. The first committed step in pseudopterosin biosynthesis comprises the cyclisation of the universal diterpene precursor geranylgeranyl diphosphate to elisabethatriene. This reaction is catalysed by elisabethatriene synthase, which was purified to homogeneity from a crude coral extract. This represents the first purification to apparent homogeneity of a terpene cyclase from any marine source. The reaction kinetics of elisabethatriene synthase was examined using a steady state approach with (3)H-labelled isoprenyldiphosphates varying in carbon chain length (C(10), C(15), C(20)). For the reaction of elisabethatriene synthase with its natural substrate geranylgeranyl diphosphate, values of K(m) (2.3 x 10(-6) M), V(max) (3.4 x 10(4) nM elisabethatriene x s(-1)) and the specificity constant (k(cat)/K(m)= 1.8 x 10(-10) M(-1) x s(-1)) were comparable with diterpene cyclases from terrestrial plants. Elisabethatriene synthase also catalysed the conversion of C(15) and C(10) isoprenyldiphosphate analogues to monoterpene and sesquiterpene olefins, respectively. Kinetic parameters indicated that substrate specificity and K(m) of elisabethatriene synthase decreased with decreasing isoprenoid carbon chain length. Furthermore, GC-MS analysis showed increased product diversity with decreasing isoprenoid carbon chain length.  相似文献   

18.
The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the presumptive, enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which ultimately cyclizes to the various monoterpene skeletons. Previous experimental approaches using the noncyclizable substrate analogs 6,7-dihydrogeranyl diphosphate and racemic methanogeranyl diphosphate, in attempts to dissect the cryptic isomerization step from the normally coupled reaction sequence, were thwarted by the limited product available from native monoterpene synthases and by the inability to resolve chiral monoterpene products at the microscale. These approaches were revisited using three recombinant monoterpene synthases and chiral phase capillary gas chromatographic methods to separate antipodal products of the substrate analogs. The recombinant monoterpene olefin synthases, (-)-limonene synthase from spearmint and (-)-pinene synthase from grand fir, yielded essentially only achiral, olefin products (corresponding to the respective analogs and homologs of myrcene, trans-ocimene and cis-ocimene) from 6,7-dihydrogeranyl diphosphate and (2S,3R)-methanogeranyl diphosphate; no significant amounts of terpenols or homoterpenols were formed, nor was direct evidence obtained for the formation of the anticipated analog and homolog of the tertiary intermediate linalyl diphosphate (i.e., 6,7-dihydrolinalyl diphosphate and homolinalyl diphosphate, respectively). In the case of recombinant (+)-bornyl diphosphate synthase from common sage, the achiral olefins were generated, as before, from 6,7-dihydrogeranyl diphosphate and (2R,3S)-methanogeranyl diphosphate, but 6,7-dihydrolinalool and homolinalool also comprised significant components of the respective product mixtures, indicating greater access of water to the active site of this enzyme compared to the olefin synthases; again, no direct evidence for the production of 6,7-dihydrolinalyl diphosphate or homolinalyl diphosphate was obtained. Resolution of the terpenol products of (+)-bornyl diphosphate synthase, by chiral phase separation, revealed the predominant formation of (3R)-dihydrolinalool from dihydrogeranyl diphosphate and of (4S)-homolinalool from (2R,3S)-methanogeranyl diphosphate. The opposite stereochemistries of these products indicates water trapping from opposite faces of the corresponding tertiary carbocationic intermediates of the respective reactions, a phenomenon that appears to result from the binding conformations of these substrate analogs. Although these experiments failed to provide direct evidence for the tertiary intermediate of the tightly coupled isomerization-cyclization sequence, they did reveal a mechanistic difference between the olefin synthases and bornyl diphosphate synthase involving access of water as a participant in the reaction.  相似文献   

19.
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.  相似文献   

20.
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号