首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatozoa are central to fertilization and the evolutionary fitness of sexually reproducing organisms. As such, a deeper understanding of sperm proteomes (and associated reproductive tissues) has proven critical to the advancement of the fields of sexual selection and reproductive biology. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here, we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins, and we provide the first label-free quantitation of the sperm proteome for 2125 proteins. The top 20 most abundant proteins included the structural elements α- and β-tubulins and sperm leucyl-aminopeptidases. Both gene content and protein abundance were significantly reduced on the X chromosome, consistent with prior genomic studies of X chromosome evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. We also identified almost one-half of known Drosophila ribosomal proteins in the DmSP3. The role of this subset of ribosomal proteins in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins originally identified in the accessory glands. We show that a significant fraction of ‘sperm-associated Sfps’ are recalcitrant to concentrated salt and detergent treatments, suggesting this subclass of Sfps are expressed in testes and may have additional functions in sperm, per se. Overall, our results add to a growing landscape of both sperm and seminal fluid protein biology and in particular provides quantitative evidence at the protein level for prior findings supporting the meiotic sex-chromosome inactivation model for male-specific gene and X chromosome evolution.  相似文献   

2.
The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome.  相似文献   

3.
4.
We have used gel electrophoretic techniques including isoelectric focusing, blue native, acid-urea, 16-benzyldimethyl-n-hexadecylammonium chloride or SDS first dimensions and SDS Laemmli or tricine second dimensions to separate the proteins from highly-purified Neurospora mitochondria and sub-mitochondrial fractions (membrane, soluble, protein complexes and ribonucleoproteins). The products of 260 genes, many of them in multiple processed or modified forms, were identified by MALDI-TOF mass spectrometry. This work confirms the existence, expression, and mitochondrial localization of the products of 55 Neurospora genes previously annotated only as predicted or hypothetical, and of 101 genes not identified in previous mass spectrometry studies. Combined with previous mass spectrometry studies, and re-evaluation of genome annotations, we have compiled a curated list of 358 proteins identified in proteomic studies that are likely to be bona fide mitochondrial proteins plus 80 other identified proteins that may be mitochondrial. Literature data mining and computational predictions suggest that Neurospora mitochondria also contain another 299 proteins not yet identified in proteomics projects. Taken together, these data suggest that the products of at least 738 genes comprise the Neurospora mitochondrial proteome.  相似文献   

5.
In the past decade, improvements in genome annotation, protein fractionation methods and mass spectrometry instrumentation resulted in rapid growth of Drosophila proteomics. This review presents the current status of proteomics research in the fly. Areas that have seen major advances in recent years include efforts to map and catalog the Drosophila proteome and high-throughput as well as targeted studies to analyze protein–protein interactions and post-translational modifications. Stable isotope labeling of flies and other applications of quantitative proteomics have opened up new possibilities for functional analyses. It is clear that proteomics is becoming an indispensable tool in Drosophila systems biology research that adds a unique dimension to studying gene function.  相似文献   

6.
Application of Mass Spectrometry in Proteomics   总被引:6,自引:0,他引:6  
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.  相似文献   

7.
Differential detergent fractionation (DDF), which relies on detergents to sequentially extract proteins from eukaryotic cells, has been used to increase proteome coverage of 2D-PAGE. Here, we used DDF extraction in conjunction with the nonelectrophoretic proteomics method of liquid chromatography and electrospray ionization tandem mass spectrometry. We demonstrate that DDF can be used with 2D-LC ESI MS2 for comprehensive cellular proteomics, including a large proportion of membrane proteins. Compared to some published methods designed to isolate membrane proteins specifically, DDF extraction yields comprehensive proteomes which include twice as many membrane proteins. Two-thirds of these membrane proteins have more than one trans-membrane domain. Since DDF separates proteins based upon their physicochemistry and subcellular localization, this method also provides data useful for functional genome annotation. As more genome sequences are completed, methods which can aid in functional annotation will become increasingly important.  相似文献   

8.
The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.  相似文献   

9.
The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.  相似文献   

10.
Proteomics: quantitative and physical mapping of cellular proteins   总被引:66,自引:0,他引:66  
Genome sequencing provides a wealth of information on predicted gene products (mostly proteins), but the majority of these have no known function. Two-dimensional gel electrophoresis and mass spectrometry have, coupled with searches in protein and EST databases, transformed the protein-identification process. The proteome is the expressed protein complement of a genome and proteomics is functional genomics at the protein level. Proteomics can be divided into expression proteomics, the study of global changes in protein expression, and cell-map proteomics, the systematic study of protein-protein interactions through the isolation of protein complexes.  相似文献   

11.
12.
Expression of F1Fo-ATP synthase, which generates the majority of cellular ATP and is believed to be strictly confined to mitochondria, has recently been identified in ectopic locations, together with the four complexes of oxidative phosphorylation (OXPHOS) or enzymes from the Krebs cycle. Identification of these proteins has mostly been accomplished by proteomic methods and mass spectrometry - techniques that hold great promise in increasing our understanding of the proteome. The ectopic presence of ATP synthase has variably been attributed to contamination of the sample or to its action as a cell-surface receptor for apparently unrelated ligands, but OXPHOS proteins have sometimes been found to be catalytically active in oxidative phosphorylation, as they were true components of the system under investigation. The present article focuses on how mass spectrometry can increase our understanding of the proteome of subcellular membranes. We review the recent evidence for an extra-mitochondrial expression of OXPHOS by proteomics studies, highlighting what we can learn by combining these data.  相似文献   

13.
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.  相似文献   

14.
Mass spectrometry based proteomics has facilitated sperm composition studies in several mammalian species but no studies have been undertaken in non-human primate species. Here we report the analysis of the 1247 proteins that comprise the Rhesus macaque (Macaca mulatta) sperm proteome (termed the MacSP). Comparative analysis with previously characterized mouse and human sperm proteomes reveals substantial levels of orthology (47% and 40% respectively) and widespread overlap of functional categories based on Gene Ontology analyses. Approximately 10% of macaque sperm genes (113/1247) are significantly under-expressed in the testis as compared with other tissues, which may reflect proteins specifically acquired during epididymal maturation. Phylogenetic and genomic analyses of three MacSP ADAMs (A-Disintegrin and Metalloprotease proteins), ADAM18-, 20- and 21-like, provides empirical support for sperm genes functioning in non-human primate taxa which have been subsequently lost in the lineages leading to humans. The MacSP contains proteasome proteins of the 20S core subunit, the 19S proteasome activator complex and an alternate proteasome activator PA200, raising the possibility that proteasome activity is present in mature sperm. Robust empirical characterization of the Rhesus sperm proteome should greatly expand the possibility for targeted molecular studies of spermatogenesis and fertilization in a commonly used model species for human infertility.The application of mass spectrometry (MS) based proteomics, coupled with whole genome annotation of an increasing number of species, has greatly extended our knowledge of sperm composition. Traditional methods used to assess sperm composition, including the use of sperm-specific antibodies and 2D gel electrophoresis, have identified a limited number of sperm proteins. These traditional studies have been augmented in recent years by the use of high throughput and highly sensitive MS (shotgun proteomics) that have substantially increased the accuracy of peptide identification, resulting in a significant increase in proteome coverage. Indeed, advances in MS instrumentation, data acquisition, and the availability of genome annotations have, for example, increased sperm proteome coverage in Drosophila from 381 (1) to 1108 proteins (2) over a five year period.Two main MS based methodologies have been applied to study sperm composition, including (i) 2D PAGE followed by spot excision and MS and (ii) digestion of proteins, followed by MS/MS analysis of the resulting peptides (3). Although each method has its own advantages and disadvantages, a far greater level of proteome coverage is obtained using MS/MS (4). A previous comparative study found that each method identified proteins not found in the other and vice versa, and therefore it has been suggested that these methods should be used to complement each other (5). Thus, although no single methodology yet exists capable of producing a complete whole cell proteome, MS/MS methods provide deeper and broader coverage and are therefore the current method of choice. Shotgun proteomics has characterized sperm proteomes in a variety of taxa including plants, invertebrates and mammals such as human, mouse, rat, and bull (3, 611). These studies achieve varying levels of proteome coverage as a result of several factors including the choice of MS equipment, sample acquisition, purification, solublization, and fractionation schemes. Although these different approaches make direct comparisons difficult they nevertheless have provided invaluable information regarding the composition of sperm and have helped to identify novel proteins that play important roles in sperm function and reproduction.In this study we use MS based proteomics to elucidate the sperm proteome of a species of old world monkey, the Rhesus macaque (Macaca mulatta). Due primarily to their genetic and physiological similarities to humans, Rhesus macaques are the most widely used nonhuman primate model system for basic and applied biomedical research (12). Rhesus macaques are also used extensively as a model of human reproduction where numerous similarities at the molecular level have been observed between gametes of the two species, and why Rhesus macaques have become a useful model system for fertility and assisted reproductive technology research (13). A more complete knowledge of the sperm proteome will facilitate reproductive studies using the Rhesus macaque as a model organism. However, despite its widespread use in reproductive biology, the macaque sperm proteome (MacSP)1 has yet to be characterized.Although insight into the MacSP will facilitate reproductive studies using the Rhesus macaque as a model organism, this knowledge can also be used to better understand the composition of human sperm. Sperm mature and gain fertilization competency as they traverse the epididymis, a specialized duct that connects the testis to the vas deferens (14). During the maturation process, sperm lose or modify a number of their surface proteins and gain additional transient or permanent surface proteins in a well-organized manner, and it is only after emerging from the cauda epididymis that sperm are motile and considered fertilization competent (14, 15).Proteomic studies of human sperm have been undertaken (3, 6, 10), identifying between 98–1760 sperm proteins, however these studies used sperm from ejaculates which complicates sperm proteome analysis. A previous study identified 923 proteins present in human seminal plasma (16), which is likely to be only a fraction of the seminal plasma proteome. Human sperm proteome data sets derived from human ejaculates makes it difficult to differentiate which of the identified proteins are sperm or seminal plasma constituents. For example, a major seminal protein family, the semenogelins are not expressed in the testis but are found in sperm proteomes determined from ejaculates (6, 10). Such highly abundant seminal proteins may mask lower abundance integral sperm proteins and inhibit their identification by MS. In order to avoid these problems, we collected mature sperm directly from the cauda epididymis of the Rhesus macaque, thus avoiding contamination from seminal plasma proteins.In the present study, sperm proteins were separated using 1D SDS-PAGE, digested and the resulting peptides analyzed by LC MS/MS. Using high stringency parameters for peptide identification, we conservatively identified 1247 proteins from purified samples of Rhesus macaque sperm. Given their close evolutionary relationship, the Rhesus macaque and human share 93% nucleotide homology (12). Data from this study can be used to complement what is currently known about the composition of human sperm and provides a more useful proxy of human sperm proteome composition than the proteomes of other non-primate mammals for which data is available. Studies of sperm composition, especially those in human, can be applied to develop novel molecular based clinical diagnostic tests of sperm quality, which is currently limited to evaluating parameters such as sperm count, morphology and motility. In addition, knowledge of sperm components can lead to the discovery of novel contraceptives and infertility treatments.  相似文献   

15.
Expression of F1Fo-ATP synthase, which generates the majority of cellular ATP and is believed to be strictly confined to mitochondria, has recently been identified in ectopic locations, together with the four complexes of oxidative phosphorylation (OXPHOS) or enzymes from the Krebs cycle. Identification of these proteins has mostly been accomplished by proteomic methods and mass spectrometry – techniques that hold great promise in increasing our understanding of the proteome. The ectopic presence of ATP synthase has variably been attributed to contamination of the sample or to its action as a cell-surface receptor for apparently unrelated ligands, but OXPHOS proteins have sometimes been found to be catalytically active in oxidative phosphorylation, as they were true components of the system under investigation. The present article focuses on how mass spectrometry can increase our understanding of the proteome of subcellular membranes. We review the recent evidence for an extra-mitochondrial expression of OXPHOS by proteomics studies, highlighting what we can learn by combining these data.  相似文献   

16.
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled to this advanced technological platform as a required component of not only peptide and protein identification, but quantification and functional inference, such as protein modifications and interactions. Proteomics faces several key computational challenges such as identification of proteins and peptides from tandem mass spectra as well as their quantitation. In addition, the application of proteomics to systems biology requires understanding the functional proteome, including how the dynamics of the cell change in response to protein modifications and complex interactions between biomolecules. This review presents an overview of recently developed methods and their impact on these core computational challenges currently facing proteomics.  相似文献   

17.
18.
The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.  相似文献   

19.
Here, we report on our proteomic studies in the field of cardiovascular medicine. Our research has been focused on understanding the role of proteins in cardiovascular disease with a particular focus on epigenetic regulation and biomarker discovery, with the objective of better understanding cardiovascular pathophysiology to lead to the development of new and better diagnostic and therapeutic methods. We have used mass spectrometry for over 5 years as a viable method to investigate protein-protein interactions and post-translational modifications in cellular proteins as well as a method to investigate the role of extra-cellular proteins. Use of mass spectrometry not only as a research tool but also as a potential diagnostic tool is a topic of interest. In addition to these functional proteomics studies, structural proteomic studies are also done with expectations to allow for pinpoint drug design and therapeutic intervention. Collectively, our proteomics studies are focused on understanding the functional role and potential therapeutically exploitable property of proteins in cardiovascular disease from both intra-cellular and extra-cellular aspects with both functional as well as structural proteomics approaches to allow for comprehensive analysis.  相似文献   

20.
The knowledge of the mature sperm proteome is undoubtedly the basis for understanding sperm function, the mechanisms responsible for fertilization, the reasons for infertility and possible treatments. The methods of sperm protein extraction depend mainly on the proteins of interest and the protein separation techniques that will be employed. The isolation of the membrane proteins appears to be most problematic step. Nevertheless, two-dimensional electrophoresis and mass spectrometry have become the main techniques used in human sperm protein analysis. We outline the present techniques used to examine the sperm proteome and data generated from studies on the human sperm and different types of male infertility. We present the most characteristic proteins that are involved in sperm function. Their value as biomarkers for diagnosis and treatment of infertility would require further validation. We focus on selected and critical studies of the human sperm proteome to present our subjective view of this fast-moving field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号