首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.  相似文献   

2.
Early detection of colorectal cancer (CRC) improves patient survival. Plasma tissue inhibitor of metalloproteinases 1 (TIMP-1) measurements by enzyme-linked immunosorbent assay (ELISA) have been suggested as a new method for the early detection of CRC. To further investigate the nature of TIMP-1 in plasma, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI TOF MS) was used. TIMP-1 measurements of plasma from 16 healthy donors and 14 CRC patients were performed using TIMP-1 monoclonal antibody in SELDI TOF MS and ELISA. SELDI TOF MS applying an antibody to TIMP-1 revealed that human plasma TIMP-1 has a mass of 25.1 kDa and exhibits several isoforms. Both methods showed increased plasma TIMP-1 values for cancer patients as compared to healthy individuals. The p values for the separation of the groups were 0.0019 for ELISA and <0.0001 for SELDI TOF MS. CRC did not fundamentally affect the appearance of TIMP-1 as evaluated by SELDI TOF MS.  相似文献   

3.
The purpose of this study was to identify and validate novel serological protein biomarkers of human colorectal cancer (CRC). Proteins from matched CRC and adjacent normal tissue samples were resolved by two-dimensional gel electrophoresis. From each gel all spots were excised, and enveloped proteins were identified by MS. By comparison of the resulting protein profiles, dysregulated proteins can be identified. A list of all identified proteins and validation of five exemplarily selected proteins, elevated in CRC was reported previously (Roessler, M., Rollinger, W., Palme, S., Hagmann, M. L., Berndt, P., Engel, A. M., Schneidinger, B., Pfeffer, M., Andres, H., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W., and Tacke, M. (2005) Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res. 11, 6550-6557). Here we describe identification and initial validation of another potential marker protein for CRC. Comparison of tissue protein profiles revealed strong elevation of proteasome activator complex subunit 3 (PSME3) expression in CRC tissue. This dysregulation was not detectable based on the spot pattern. The PSME3-containing spot on tumor gels showed no visible difference to the corresponding spot on matched control gels. MS analysis revealed the presence of two proteins, PSME3 and annexin 4 (ANXA4) in one and the same spot on tumor gels, whereas the matched spot contained only one protein, ANXA4, on control gels. Therefore, dysregulation of PSME3 was masked by ANXA4 and could only be recognized by MS-based analysis but not by image analysis. To validate this finding, antibody to PSME3 was developed, and up-regulation in CRC was confirmed by Western blot analysis and immunohistochemistry. Finally by developing a highly sensitive immunoassay, PSME3 could be detected in human sera and was significantly elevated in CRC patients compared with healthy donors and patients with benign bowel disease. We propose that PSME3 be considered a novel serum tumor marker for CRC that may have significance in the detection and in the management of patients with this disease. Further studies are needed to fully assess the potential clinical value of this marker candidate.  相似文献   

4.
Although HPLC-ESI-MS/MS is rapidly becoming an indispensable tool for the analysis of peptides in complex mixtures, the sequence coverage it affords is often quite poor. Low protein expression resulting in peptide signal intensities that fall below the limit of detection of the MS system in combination with differences in peptide ionization efficiency plays a significant role in this. A second important factor stems from differences in physicochemical properties of each peptide and how these properties relate to chromatographic retention and ultimate detection. To identify and understand those properties, we compared data from experimentally identified peptides with data from peptides predicted by in silico digest of all corresponding proteins in the experimental set. Three different complex protein mixtures extracted were used to define a training set to evaluate the amino acid retention coefficients based on linear regression analysis. The retention coefficients were also compared with other previous hydrophobic and retention scale. From this, we have constructed an empirical model that can be readily used to predict peptides that are likely to be observed on our HPLC-ESI-MS/MS system based on their physicochemical properties. Finally, we demonstrated that in silico prediction of peptides and their retention coefficients can be used to generate an inclusion list for a targeted mass spectrometric identification of low abundance proteins in complex protein samples. This approach is based on experimentally derived data to calibrate the method and therefore may theoretically be applied to any HPLC-MS/MS system on which data are being generated.  相似文献   

5.
Colorectal cancer (CRC), one of the most prevalent cancers in the western world, is treatable if detected early. However, 70% of CRC is detected at an advanced stage. This is largely due to the inadequacy of current faecal occult blood screening testing and costs involved in conducting population-based colonoscopy, the ‘gold standard’ for CRC detection. Another biomarker for CRC, carcinoembryonic antigen, while useful for monitoring CRC recurrence, is ineffective, lacking the specificity required early detection of CRC. For these reasons there is a need for more effective blood-based markers for early CRC detection. In this study we targeted glycoproteins secreted from the human colon carcinoma cell line LIM1215 as a source of potential CRC biomarkers. Secreted candidate glycoproteins were confirmed by MS and validated by Western blot analysis of tissue/tumour interstitial fluid (Tif) from LIM1215 xenograft tumours grown in immunocompromised mice. Overall, 39 glycoproteins were identified in LIM1215 culture media (CCM) and 5 glycoproteins in LIM1215 tumour xenograft Tif; of these, cadherin-17 (CDH17), galectin-3 binding protein (LGALS3BP), and tyrosine-protein kinase-like 7 (PTK7) were identified in both CM and glycosylation motifs. Swiss-Prot was used to annotate Tif. Many of the glycoproteins identified in this study (e.g., AREG, DSG2, EFNA1, EFNA3, EFNA4, EPHB4, ST14, and TIMP1) have been reported to be implicated in CRC biology. Interestingly, the cadherin-17 ectodomain, but not full length cadherin-17, was identified in CM, Tif and plasma derived from mice bearing the LIM1215 xenograft tumour. To our knowledge, this is the first report of the cadherin-17 ectodomain in plasma. In this study, we report for the first time that the presence of full-length cadherin-17 in exosomes released into the CM. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

6.
Post-translational modifications (PTMs) chemically and physically alter the properties of proteins, including their folding, subcellular localization, stability, activity, and consequently their function. In spite of their relevance, studies on PTMs in plants are still limited. Small Ubiquitin-like Modifier (SUMO) modification regulates several biological processes by affecting protein-protein interactions, or changing the subcellular localizations of the target proteins. Here, we describe a novel proteomic approach to identify SUMO targets that combines 2-D liquid chromatography, immunodetection, and mass spectrometry (MS) analyses. We have applied this approach to identify nuclear SUMO targets in response to heat shock. Using a bacterial SUMOylation system, we validated that some of the targets identified here are, in fact, labeled with SUMO1. Interestingly, we found that GIGANTEA (GI), a photoperiodic-pathway protein, is modified with SUMO in response to heat shock both in vitro and in vivo.  相似文献   

7.
In recent years, a growing number of proteins have been shown to be localized in more than one subcellular location, although encoded from a single gene. Fundamental aspects in the research of such dual-distributed proteins involve determination of their subcellular localization and their location-specific functions. The lack of sensitive and suitable tools to address these issues has led us to develop a novel tool for functional detection of cytosolic/nuclear isoproteins in the cell, which we term location-specific depletion or subcellular knockout. The depletion of the protein occurs post-translationally via degradation by the ubiquitin-proteasome system, which operates only in the cytosol and the nucleus. As an example, we fused the yeast tricarboxylic acid (TCA) cycle enzyme aconitase to a degron sequence (SL17) recognizable by the ubiquitin-proteasome system. This fusion resulted in the degradation of the cytosolic enzyme, specifically eliminating its activity within the cytosolic glyoxylate shunt without disrupting the protein's activity within the mitochondrial TCA cycle. We show that the degradation of the fusion protein can be attributed specifically to the ubiquitin-proteasome system and that inhibition of this degradation restores its cytosolic activity. This novel tool can be used to detect small subpopulations of dual-targeted proteins, thereby revealing isoproteins that were considered to be confined to a single compartment. The particular advantage of this specific subcellular depletion is that it can reveal the functions of the cytosolic/nuclear isoproteins.  相似文献   

8.
Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.  相似文献   

9.
Colorectal cancer (CRC) is a major public health issue worldwide, and novel tumor markers may contribute to its efficient management by helping in early detection, prognosis or surveillance of disease. The aim of our study was to identify new serum biomarkers for CRC, and we followed a phased biomarker discovery and validation process to obtain an accurate preliminary assessment of potential clinical utility. We compared colonic tumors and matched normal tissue from 15 CRC patients, using two-dimensional difference gel electrophoresis (2D-DIGE), and identified 17 proteins that had significant differential expression. These results were further confirmed by western blotting for heat shock protein (HSP) 60, glutathione-S-transferase Pi, α-enolase, T-complex protein 1 subunit β, and leukocyte elastase inhibitor, and by immunohistochemistry for HSP60. Using mAbs raised against HSP60, we developed a reliable (precision of 5-15%) and sensitive (0.3 ng·mL(-1)) immunoassay for the detection of HSP60 in serum. Elevated levels of HSP60 were found in serum from CRC patients in two independent cohorts; the receiver-operating characteristic curve obtained in 112 patients with CRC and 90 healthy controls had an area under the curve (AUC) of 0.70, which was identical to the AUC of carcinoembryonic antigen. Combination of serum markers improved clinical performance: the AUC of a three-marker logistic regression model combining HSP60, carcinoembryonic antigen and carbohydrate antigen 19-9 reached 0.77. Serum HSP60 appeared to be more specific for late-stage CRC; therefore, future studies should evaluate its utility for determining prognosis or monitoring therapy rather than early detection.  相似文献   

10.
Background: Altered nuclear and genomic structure and function are hallmarks of cancer cells. Research into nuclear proteins in human tissues could uncover novel molecular processes in cancer. Here, we examine biochemical tissue fractions containing chromatin-binding (CB) proteins in the context of colorectal cancer (CRC) progression. Methods: CB protein-containing fractions were biochemically extracted from human colorectal tissues, including carcinomas with chromosomal instability (CIN), carcinomas with microsatellite instability (MIN), and adenomas. The CB proteins were subjected to label-free LC–MS/MS and the data were analyzed by bioinformatics. Results: Over 1700 proteins were identified in the CB fraction from colonic tissues, including 938 proteins associated with nuclear annotation. Of the latter, 169 proteins were differential between adenomas and carcinomas. In this adenoma-versus-carcinoma comparison, apart from specific changes in components of the splicing and protein translational machineries, we also identified significant changes in several proteins associated with chromatin-directed functions. Furthermore, several key cell cycle proteins as well as those involved in cellular stress were increased, whereas specific components of chromosome segregation and DNA recombination/repair systems were decreased. Conclusions: Our study identifies proteomic changes at the subnuclear level that are associated with CRC and may be further investigated. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

11.
The subcellular localization of herpes simplex virus tegument proteins during infection is varied and complex. By using viruses expressing tegument proteins tagged with fluorescent proteins, we previously demonstrated that the major tegument protein VP22 exhibits a cytoplasmic localization, whereas the major tegument protein VP13/14 localizes to nuclear replication compartments and punctate domains. Here, we demonstrate the presence of a second minor population of VP22 in nuclear dots similar in appearance to those formed by VP13/14. We have constructed the first-described doubly fluorescence-tagged virus expressing VP22 and VP13/14 as fusion proteins with cyan fluorescent protein and yellow fluorescent protein, respectively. Visualization of both proteins within the same live infected cells has indicated that these two tegument proteins localize to the same nuclear dots but that VP22 appears there earlier than VP13/14. Further studies have shown that these tegument-specific dots are detectable as phase-dense bodies as early as 2 h after infection and that they are different from the previously described nuclear domains that contain capsid proteins. They are also different from the ICP0 domains formed at cellular nuclear domain 10 sites early in infection but, in almost all cases, are located in juxtaposition to these ICP0 domains. Hence, these tegument proteins join a growing number of proteins that are targeted to discrete nuclear domains in the herpesvirus-infected cell nucleus.  相似文献   

12.
Colorectal cancer (CRC) is the second deadliest cancer worldwide. Here, we aimed to study metastasis mechanisms using spatial proteomics in the KM12 cell model. Cells were SILAC‐labeled and fractionated into five subcellular fractions corresponding to: cytoplasm, plasma, mitochondria and ER/golgi membranes, nuclear, chromatin‐bound and cytoskeletal proteins and analyzed with high resolution mass spectrometry. We provide localization data of 4863 quantified proteins in the different subcellular fractions. A total of 1318 proteins with at least 1.5‐fold change were deregulated in highly metastatic KM12SM cells respect to KM12C cells. The protein network organization, protein complexes and functional pathways associated to CRC metastasis was revealed with spatial resolution. Although 92% of the differentially expressed proteins showed the same deregulation in all subcellular compartments, a subset of 117 proteins (8%) showed opposite changes in different subcellular localizations. The chaperonin CCT, the Eif2 and Eif3 initiation of translation and the oxidative phosphorylation complexes together with an important number of guanine nucleotide‐binding proteins, were deregulated in abundance and localization within the metastatic cells. Particularly relevant was the relationship of deregulated protein complexes with exosome secretion. The knowledge of the spatial proteome alterations at subcellular level contributes to clarify the molecular mechanisms underlying colorectal cancer metastasis and to identify potential targets of therapeutic intervention.  相似文献   

13.
It is difficult to isolate rare, PCR-quality DNA from specimens containing large quantities of nonspecific DNA from multiple sources (heterogeneous DNA). Extracting human DNA from stool for colorectal cancer (CRC) screening tests exemplifies this technically challenging sample preparation problem. The stool matrix is complex, the DNA composition heterogeneous, and CRC-associated mutated DNA is rare. This report describes a novel solid phase DNA sequence-specific hybrid capture sample preparation method: the reversible electrophoretic capture affinity protocol (RECAP). We show that RECAP, compared with other methods, is capable of extracting linearly increasing amounts of human DNA from increasing amounts of total stool DNA in a manner that avoids co-purifying PCR inhibitors. RECAP thereby increases the yield of rare mutated DNA molecules and thus increases the detection sensitivity for CRC-associated mutations.  相似文献   

14.
Numerous previously uncharacterized molecules resident within the low molecular weight circulatory proteome may provide a picture of the ongoing pathophysiology of an organism. Recently, proteomic signatures composed of low molecular weight molecules have been identified using mass spectrometry combined with bioinformatic algorithms. Attempts to sequence and identify the molecules that underpin the fingerprints are currently underway. The finding that many of these low molecular weight molecules may exist bound to circulating carrier proteins affords a new opportunity for fractionation and separation techniques prior to mass spectrometry-based analysis. In this study we demonstrate a method whereby nanoporous substrates may be used for the facile and reproducible fractionation and selective binding of the serum-based biomarker material, including subcellular proteins found within the serum. Aminopropyl-coated nanoporous silicon, when exposed to serum, can deplete serum of proteins and yield a serum with a distinct, altered MS profile. Additionally, aminopropyl-coated, nanoporous controlled-pore glass beads are able to bind a subset of serum proteins and release them with stringent elution. The eluted proteins have distinct MS profiles, gel electrophoresis profiles, and differential peptide sequence identities, which vary based on the size of the nanopores. These material surfaces could be employed in strategies for the harvesting and preservation of labile and carrier-protein-bound molecules in the blood.  相似文献   

15.
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the United States and Egypt for biomarker discovery using label‐free proteomic analysis by LC‐MS/MS. We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by MRM on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the United States and Egyptian cohorts. Among the 21 candidates, ten were previously reported as HCC‐associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals upregulation of the complement and coagulation cascades pathway and downregulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers. All MS data have been deposited in the ProteomeXchange with identifier PXD001171 ( http://proteomecentral.proteomexchange.org/dataset/PXD001171 ).  相似文献   

16.
Proteomic analyses of the proliferative and secretory phases of the human endometrium were carried out to identify proteins and discover differentially expressed proteins using isotope-coded affinity tags, three stages of chromatographic separation and online tandem mass spectrometry (MS/MS). From an initial list of 346 proteins identified by ProICAT, manual inspection of MS/MS spectra and confirmatory searches pared the list down to 119 positively identified proteins. Only five of the proteins showed consistent differential expression. The utility of some of these proteins as indicators of true differential expression in the endometrium is open to discussion. The two proteins with unquestionable differential expressions in the secretory endometrium are: glutamate NMDA receptor subunit zeta 1 precursor and FRAT1. Some of the proteins that show no differential expression have previously been examined in gene-expression studies with similar conclusions.  相似文献   

17.
Zhang X  Xiao Z  Liu X  Du L  Wang L  Wang S  Zheng N  Zheng G  Li W  Zhang X  Dong Z  Zhuang X  Wang C 《PloS one》2012,7(2):e31868
Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC.  相似文献   

18.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein-protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

19.
Kim YS  Son OL  Lee JY  Kim SH  Oh S  Lee YS  Kim CH  Yoo JS  Lee JH  Miyoshi E  Taniguchi N  Hanash SM  Yoo HS  Ko JH 《Proteomics》2008,8(16):3229-3235
N-acetylglucosaminyltransferase V (GnT-V) has been reported to be upregulated in malignant cancer cells, and its targets have been sought after with regard to biomarker identification. The low capacity and high false positive rates of 2-DE gel-based lectin blots using phytohemagglutinin-L(4) (L-PHA) prompted us to develop a novel protocol for identifying GnT-V targets, in which serum proteins were subjected to immunodepletion, alkylation, and lectin precipitation using L-PHA coupled to avidin-agarose bead complexes, and tryptic digestion. Proteins captured by L-PHA conjugates were analyzed by a nano-LC-FT-ICR/LTQ MS. Here, we report 26 candidate biomarkers for colorectal cancer (CRC) that show 100% specificity and sensitivities of greater than 50%. Not only can these candidate proteins be used as analytes for validation, but the novel protocol described herein can be applied to biomarker discovery in nonCRCs.  相似文献   

20.
Glycosylation is the most important and abundant post-translational modification in serum proteome. Several specific types of glycan epitopes have been shown to be associated with various types of disease. Direct analysis of serum glycoproteins is challenging due to its wide dynamic range. Alternatively, glycoproteins can be discovered in the secretome of model cell lines and then confirmed in blood. However, there has been little experi-mental evidence showing cell line secretome as a tractable target for the study of serum glycoproteins. We used a hydrazine-based glycocapture method to selectively enrich glycoproteins from the secretome of the breast cancer cell line Hs578T. A total of 132 glycoproteins were identified by nanoLC-MS/MS analysis. Among the identified proteins, we selected 13 proteins that had one or more N-glycosylation motifs in the matched peptides, which were included in the Secreted Protein Database but not yet in the Plasma Proteome Database (PPD), and whose antibodies were commercially available. Nine out of the 13 selected proteins were detected from human blood plasma by western analysis. Furthermore, eight proteins were also detected from the plasma by targeted LC-MS/MS, which had never been previously identified by data-dependent LC-MS/MS. Our results provide novel proteins that should be enrolled in PPD and suggest that analysis of cell line secretome with subfractionation is an efficient strategy for discovering disease-relevant serum proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号