首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133(+) precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133(+) cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133(+) cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133(+) cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.  相似文献   

4.
Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117+CD34+Flk-1+ by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117+ stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice.  相似文献   

5.
6.
7.
Tumor-associated neovasculature is a critical therapeutic target; however, despite significant progress made in the clinical efficacy of anti-vessel drugs, the effect of these agents remains transient: over time, most patients develop resistance, which inevitably leads to tumor progression. To develop more effective treatments, it is imperative that we better understand the mechanisms involved in tumor vessel formation, how they participate to the tumor progression and metastasis, and the best way to target them.  相似文献   

8.
Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.  相似文献   

9.
Progenitor cells may contribute to cardiac regeneration. Here, we investigated the role of cadherins and integrins for differentiation of human adult circulating endothelial progenitor cells (EPCs) into cardiomyocytes (CM) in a co-culture system. N- and E-cadherin were expressed in EPCs and were localized at the interface between EPCs and CM. Incubation of a blocking antibody against E-cadherin reduced the expression of CM marker protein in EPCs. Blocking antibodies against N- or P-cadherin or the beta1- and beta2-integrins were not effective. These data suggested that cell-to-cell communication mediated by E-cadherin contributes to the acquirement of a cardiomyogenic phenotype of human endothelial progenitor cells.  相似文献   

10.
The hierarchy of endothelial progenitor cells (EPCs) in human umbilical cord blood has been disclosed. In this study we compare, for the first time, the angiogenic potential difference between two types of EPCs. We cultured mononuclear cells (MNCs) isolated from human umbilical cord blood using endothelial cell-conditioned medium and obtained two types of EPCs, referred to as circulating angiogenic cells (CACs) and high proliferative potential endothelial progenitor cells (HPP-EPCs). Both types of cells possess characteristics of EPCs, including expressing CD31, VE-cadherin, KDR and von Willebrand factor, uptake of Ac-LDL and binding to lectin. However, unlike CACs, which express CD14 but not CD133, HPP-EPCs express CD133 but not CD14. Also, unlike CACs, HPP-EPCs display stronger proliferation and clonogenic potential in vitro and show stronger ability to promote vascular growth in the hind-limb model of ischemia in mice (BALB/C-nu) in vivo.  相似文献   

11.
Yu Y  Gao Y  Wang H  Huang L  Qin J  Guo R  Song M  Yu S  Chen J  Cui B  Gao P 《Experimental cell research》2008,314(17):3198-3208
Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.  相似文献   

12.
《Biomarkers》2013,18(6):487-492
Abstract

Context: There are few reports of endothelial progenitor cells (EPCs) in peripheral blood have been found in patients with gastric cancer.

Objective: We quantified EPCs in the peripheral blood of patients with gastric cancer, with the expectation that this approach might lead to a new marker for the diagnosis of gastric cancer.

Methods: We enumerated CD34+/CD133+ EPCs in the peripheral blood of 145 subjects by use of flow cytometry.

Results and conclusion: The quantity of peripheral blood EPCs in patients with gastric cancer are correlated with patient’s age. In addition, the number of peripheral blood EPCs in patients with gastric cancer increased with tumor node metastasis stage and histological differentiation of the cancers, and with the operative status of the patients.  相似文献   

13.
Seeding endothelial progenitor cells (EPCs) onto the surface of vascular grafts has been proved to be a promising strategy to improve nonthrombogenic potentials of small diameter artificial vessels. Here, we investigated whether in vitro shear stress modulates the tissue-type plasminogen activator (t-PA) secretion and mRNA expression in human EPCs and improves patency of the EPC-seeded polyurethane small diameter vascular grafts implanted in the canine carotid artery in vivo. In vitro shear stress, in a dose-dependent manner, increased t-PA secretion and mRNA expression of human EPCs. The in vivo implantation of EPC-seeded vascular grafts remained highly patent in shear stress pretreatment compared with stationary condition. The present findings demonstrate for the first time that in vitro shear stress can enhance t-PA secretion and gene expression in human EPCs, which contributes to improvement in nonthrombogenic potentials of EPC-seeded small diameter artificial vessels with maintenance of in vivo highly patency rate.  相似文献   

14.
The cellular localization of endothelin (ET), a novel vasoconstrictor peptide, was studied in human vascular tissues by immunohistochemistry. Distinct and diffuse staining for ET-like immunoreactivity was demonstrated in the cytoplasm of vascular endothelial cells, but not in smooth muscle cells or adventitial fibroblasts. The specificity was confirmed by the negative results following immunoabsorption. These findings suggest that human vascular endothelial cells function as an endocrine and/or paracrine cells for ET secretion.  相似文献   

15.
The identification of circulating endothelial progenitor cells (EPCs) has revolutionized approaches to cell-based therapy for injured and ischemic tissues. However, the mechanisms by which EPCs promote the formation of new vessels remain unclear. In this study, we obtained early EPCs from human peripheral blood and late EPCs from umbilical cord blood. Human umbilical vascular endothelial cells (HUVECs) were also used. Cells were evaluated for their tube-forming potential using our novel in vitro assay system. Cells were seeded linearly along a 60 μm wide path generated by photolithographic methods. After cells had established a linear pattern on the substrate, they were transferred onto Matrigel. Late EPCs formed tubular structures similar to those of HUVECs, whereas early EPCs randomly migrated and failed to form tubular structures. Moreover, late EPCs participate in tubule formation with HUVECs. Interestingly, late EPCs in Matrigel migrated toward pre-existing tubular structures constructed by HUVECs, after which they were incorporated into the tubules. In contrast, early EPCs promote sprouting of HUVECs from tubular structures. The phenomena were also observed in the in vivo model. These observations suggest that early EPCs cause the disorganization of pre-existing vessels, whereas late EPCs constitute and orchestrate vascular tube formation.  相似文献   

16.
Yang N  Li D  Jiao P  Chen B  Yao S  Sang H  Yang M  Han J  Zhang Y  Qin S 《Cytotechnology》2011,63(3):217-226
Endothelial progenitor cells (EPCs) derived from bone marrow are known to be heterogeneous. In this study, we tried to find favorable conditions that induce the differentiation of mononuclear cells (MNCs) from bone marrow into EPCs. The differentiation capacity of MNCs from rat bone marrow was investigated in different conditions, such as different media, different induction times and different culture surfaces. The cell morphology and endothelial biomarkers associated with differentiated MNCs were studied. Our results indicated that MNCs cultured in EGM-2MV (Endothelial cell basal medium-2, plus SingleQuots of growth supplements) developed a bursiform shape, a late EPC-like morphology, while MNCs cultured in complete medium (CM, M199 with 10% FBS, 20 ng/mL VEGF and 10 ng/mL bFGF) showed a spindle shape, an early EPC-like morphology. Cells of both morphologies were able to incorporate DiI-ac-LDL and bind lectin in vitro. MNCs cultured in EGM-2MV exhibited a higher proliferation rate and higher eNOS expression than MNCs cultured in CM. MNCs cultured in EGM-2MV had the ability to form tubes on Matrigel. Flow cytometry results indicated that CD133 expression was highest at day 12 and that the greatest number of cells positive for both FLK-1 and CD133 appeared at day 20 from cells cultured in dishes without fibronectin coating. In addition, the expression levels of CD133, CD31 and FLK-1/CD133 were not significantly different between cells of different shapes. Our experiments suggest that MNCs from bone marrow can be differentiated into late EP-like cells in EGM-2MV, which have the ability to rapidly proliferate. These MNCs can also be differentiated into early EP-like cells in CM. Additionally, fibronectin may not be necessary for the differentiation of EPCs to mature ECs after three generations. Differentiated MNCs from bone marrow in EGM-2MV have the characteristics of EPCs, although the expression levels of EPC markers were lower than previously reported.  相似文献   

17.
Objective: To test whether the GM-CSF accelerates the proliferation of bone marrow endothelial progenitor cells (BM EPCs). Methods: BM EPCs were induced by endothelial cell conditioned medium (EC-CM). The effect of different concentrations of GM-CSF on the proliferation of BM EPCs was evaluated by the formation of EC-cols, MTT assay, and cell cycle assay. The single progenitor cell growth curves were quantified. Results: The data indicated that GM-CSF accelerated the proliferation of BM EPCs both in colony numbers and colony size. MTT confirmed the effect of GM-CSF on accelerating the proliferation of BM EPCs. The single colony experiments showed that EC-cols expressed different proliferation capacity, suggesting that the EC-cols with different proliferation potentials might have been derived from different levels of immature progenitors. The cell cycle assay showed that the rate of cells entering into S phase was 9.3% in the group treated with GM-CSF and 2.1% in the controls. Furthermore, these cells displayed the specific endothelial cell markers and formed capillary-like structures. Conclusions: GM-CSF accelerates proliferation of BM EPCs. The potential beneficial of GM-CSF in the application of treating vascular ischemic patients is promising.  相似文献   

18.
The replacement of endothelium by endothelial progenitor cells (EPCs) for therapeutic use in order to ameliorate the vascular status of ischemic organs is now in the focus of vascular research. The aim of our studies was to investigate whether EPCs derived from peripheral blood mononuclear cells (PBMNCs-derived EPCs) or EPCs propagated from CD34+ hematopoietic stem cells (HSCs-derived EPCs), both isolated from human cord blood, are able to differentiate into early mature endothelial cells (ECs) under certain in vitro conditions. We characterized both cell populations by flow cytometry, phase contrast microscopy, fluorescence microscopy and confocal laser scanning microscopy as well as ultrastructurally using transmission and scanning electron microscopy. While PBMNCs gave rise to clusters of spindle-like EPCs after few days but did not further mature under in vitro conditions, mature ECs could only be successfully propagated from a starting population of isolated HSCs. Both, PBMNCs- and HSCs-derived EPCs, took up Dil-labeled acetylated low density lipoprotein (Dil-Ac-LDL) and could be positively stained for CD31, CD105, the vascular endothelial growth factor receptor 2 (VEGFR-2, KDR) and ulex europaeus agglutinin 1 (UEA-1) at the cell surface. EPC showed surface expression of CD54 and CD106. However, only a small portion of HSCs-derived EPCs was positive for CD54 but negative for CD106. Intracellular staining for von Willebrand factor (vWF) provided a homogenous stain in PBMNC-derived EPCs while in HSCs-derived EPCs, during cultivation for 2–3 weeks, more and more a typical punctuated staining pattern related to Weibel-Palade bodies (WPBs) was visible. By phase contrast and scanning electron microscopy, an arrangement of PBMNCs-derived EPCs in cord-like structures could be demonstrated. In these formations, cells showed parallel alignment but exhibited only few cell contacts. Well-developed WPBs could never be found in PBMNCs-derived EPCs. In contrast, differentiating HSCs-derived EPCs developed adherence junctions, interdigitating junctions as well as syndesmos. During maturation, spindle-like cell types appeared with abundant WPBs as well as cobblestone-like cell types with a fewer content of these organelles. WPBs, in the spindle-like cell types displayed conspicuous shapes and were concentrated in close proximity to mitochondria-rich areas. HSCs-derived EPCs exhibited signs of high synthetic activity such as a well-developed rough endoplasmic reticulum (RER) and multiple Golgi complexes. In the trans-Golgi network (TGN), close to the Golgi complex, a new formation of WPBs could be observed. These morphological features correlated well with a high growing capacity. Although it was not possible to demonstrate the complete differentiation line from HSCs to early matured ECs by immunologic markers because of the limited number of cells available for such investigations, distinct morphologic maturation stages could be shown at light and electron microscopical levels. In conclusion, the study presented here characterizes not only the different cell populations involved in the differentiation of early EPCs into mature ECs but also the transition stage where the maturation step takes place by demonstration of the new formation of WPBs. In this respect, these investigations provide new insights into the in vitro differentiation which could have some in vivo correlation.  相似文献   

19.
内皮祖细胞对于维持血管内皮完整性和血管稳态具有重要作用.增强EPC的数量和功能可使心血管疾病患者获益.炎症、氧化应激对内皮祖细胞动员及其功能发挥具有重要影响,本文着重综述炎症和氧化应激对内皮祖细胞动员的调控,并探讨增进内皮祖细胞数量和功能的相关治疗策略.  相似文献   

20.
Bellik L  Ledda F  Parenti A 《FEBS letters》2005,579(12):2731-2736
The exact phenotype and lineage of endothelial progenitor cells (EPCs) are still a matter of debate and different expansion protocols are used to obtain them. In this study, EPC expansion from peripheral blood mononuclear cells was analyzed within the first week of culture. Both the adherent and suspended cells, of which the latter usually discarded, were considered. We provide, for the first time, a systematic study of EPC phenotype and functional features within the first 3 days of culture. Moreover, within the 2nd day, both cellular fractions displayed a significant increase in endothelial marker expression which correlated with EPC properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号