首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of cyclic beta-(1,2)-glucans from UDP-[14C]glucose by a crude membrane preparation and whole cells of Rhizobium leguminosarum bv. trifolii TA-1 was investigated. The crude membrane system needed Mn2+, ATP, and NAD+ for optimal activity. Hardly any difference in biosynthetic activity between membrane fractions of TA-1 cells grown in the presence (200 mM) or absence of NaCl was observed. Whole TA-1 cells grown in the presence of NaCl excreted labeled, neutral cyclic beta-(1,2)-glucan during incubation with added UDP-[14C]glucose. With NaCl-free cultured TA-1 cells, no excretion was observed; however, after these cells were alternately frozen and thawed eight times, they excreted glucans. Glucan formation in vitro and glucan excretion by whole cells were strongly inhibited in the presence of 50 mg of cyclic glucan per ml (about 15 mM), indicating that biosynthesis of cyclic beta-(1,2)-glucans in strain TA-1 is controlled by end-product inhibition. These observations indicate that TA-1 cells become more permeable to cyclic glucans at high NaCl concentrations. The constant loss of glucans from cells grown in the presence of 200 mM NaCl prevented end-product inhibition and resulted in glucan accumulation of up to 1,600 mg/liter in the medium.  相似文献   

2.
The ndvB locus of Rhizobium meliloti was sequenced and found to encode a 319-kDa protein involved in the production of beta-(1----2)-glucan. Transposon Tn5 mutagenesis revealed that a large portion of the downstream half of this gene is not essential for symbiosis but is required for optimal production of beta-(1----2)-glucan. A high molecular weight inner membrane protein, believed to be the ndvB gene product, was absent from two different upstream ndvB::Tn5 mutants. This protein could be labeled in vitro with UDP-[U-14C]glucose in the wild type but not in the symbiotically defective mutants. Inner membrane preparations from the symbiotically competent downstream mutants labeled less well than did those from wild type with UDP-[U-14C] glucose and did not show distinct bands after polyacrylamide gel electrophoresis and fluorography, suggesting that C-terminal truncations of NdvB might affect the stability of this molecule. These downstream mutants had reduced amounts of periplasmic beta-(1----2)-glucan and exhibited several vegetative defects seen also in the upstream mutants. These included alterations in phage and antibiotic sensitivity, in motility, and in growth in low osmolarity media. Bacteroids produced by two of the downstream mutants were morphologically abnormal, indicating that ndvB is involved not only in invasion but also in bacteroid development.  相似文献   

3.
The cyclic beta-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic beta-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic beta-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic beta-(1,2)-glucan biosynthesis.  相似文献   

4.
We have examined some aspects of the mechanism of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens (235-kDa protein, gene product of the chvB region). The enzyme produces cyclic beta-1,2-glucans containing 17 to 23 glucose residues from UDP-glucose. In the presence of added cyclic beta-1,2-glucans (> 0.5 mg/ml) (containing 17 to 23 glucose residues), the enzyme instead synthesizes larger cyclic beta-1,2-glucans containing 24 to 30 glucose residues. This is achieved by de novo synthesis and not by disproportion reactions with the added product. This is interpreted as inhibition of the specific cyclization reaction for the synthesis of cyclic beta-1,2-glucans containing 17 to 23 glucose residues but with no concomitant effect on the elongation (polymerization) reaction. Temperature and detergents both affect the distribution of sizes of cyclic beta-1,2-glucans, but glucans containing 24 to 30 glucose residues are not produced. We suggest that the size distribution of cyclic beta-1,2-glucan products depends on competing elongation and cyclization reactions.  相似文献   

5.
A sodium deoxycholate extract containing glucosyltransferase activity was obtained from a particulate preparation from Euglena gracilis. It transferred glucose from UDP-[14C]glucose into material that was precipitated by trichloroacetic acid. This material released beta-(1 leads to 3)-glucan oligosaccharides into solution on incubation with weak acid, weak alkali and beta-(1 leads to 3)-glucosidase. The products of the incubation of the deoxycholate extract with UDP-[14C]glucose were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Radioactive bands were obtained that had the properties of beta-(1 leads to 3)-glucan covalently linked to protein by a bond labile to weak acid. High-molecular-weight material containing a beta-(1 leads to 3)-glucan was also shown to be present by gel filtration. The bond linking glucan to aglycone is possibly a pyrophosphate linkage. It is proposed that in Euglena gracilis beta-(1 leads to 3)-glucan (paramylon) is synthesized on a protein primer.  相似文献   

6.
An intermediate in cyclic beta 1-2 glucan biosynthesis   总被引:11,自引:0,他引:11  
Incubation of UDP-[14C]Glc with the inner membranes of Agrobacterium tumefaciens leads to the formation of cyclic beta 1-2 glucan and trichloroacetic acid-insoluble compounds. The proteolysis products of the latter show a positive charge in acid and a negative charge in alkaline buffers. The cyclic beta 1-2 glucan and the trichloroacetic acid insoluble compounds yield the same products on partial acid hydrolysis. Addition of excess non-radioactive UDP-Glc to the reaction mixture nearly stops the formation of radioactive beta 1-2 glucan and leads to a rapid fall of radioactivity in the trichloroacetic acid precipitate. Alkaline treatment of the insoluble compounds under conditions of beta-elimination leads to the partial release of free saccharides (about 30%). It is concluded that beta 1-2 glucan chains are built up joined to a protein and then released as free cyclic beta 1-2 glucan.  相似文献   

7.
The periplasmic cyclic beta-(1,2)-glucans of Rhizobium spp. are believed to provide functions during hypoosmotic adaptation and legume nodulation. In Rhizobium meliloti, cyclic beta-(1,2)-glucans are synthesized at highest levels when cells are grown at low osmolarity, and a considerable fraction (> or = 35%) of these glucans may become substituted with phosphoglycerol moieties. Thus far, two chromosomally encoded proteins, NdvA and NdvB, have been shown to function during cyclic beta-(1,2)-glucan biosynthesis; however, the precise roles for these proteins remain unclear. In the present study, we show that R. meliloti mutants lacking up to one-third of the downstream region of ndvB synthesize cyclic beta-(1,2)-glucans similar to those produced by wild-type cells with respect to size and phosphoglycerol substituent profile. In contrast, no phosphoglycerol substituents were detected on the cyclic beta-(1,2)-glucans synthesized by an R. meliloti ndvA mutant.  相似文献   

8.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

9.
A novel cyclic beta-1,2-glucan mutant of Rhizobium meliloti.   总被引:1,自引:1,他引:0       下载免费PDF全文
The periplasmic cyclic beta-1,2-glucans produced by bacteria within the Rhizobiaceae family provide functions during hypo-osmotic adaptation and plant infection. In Rhizobium meliloti, these molecules are highly modified with phosphoglycerol and succinyl substituents, and it is possible that the anionic character of these glucans is important for their functions. In the present study, we have used a thin-layer chromatographic screening method to identify a novel R. meliloti mutant specifically blocked in its ability to transfer phosphoglycerol substituents to the cyclic beta-1,2-glucan backbone. Further analysis revealed that the cyclic glucans produced by this mutant contained elevated levels of succinyl substituents. As a result, the overall anionic charge on the cyclic beta-1,2-glucans was found to be similar to that of wild-type cells. Despite this difference in cyclic beta-1,2-glucan structure, the mutant was shown to effectively nodulate alfalfa and to grow as well as wild-type cells in hypo-osmotic media.  相似文献   

10.
Inner membranes of Azospirillum brasilense incubated with UDP-glucose were unable to synthesize beta-(1-2) glucan and lacked the 235-kilodalton intermediate protein known to be involved in the synthesis of beta-(1-2) glucan in Agrobacterium tumefaciens and Rhizobium meliloti. Inner membranes of A. brasilense strains carrying a cosmid containing the chromosomal virulence genes chvA and chvB of Agrobacterium tumefaciens formed beta-(1-2) glucan in vitro and synthesized the 235-kilodalton intermediate protein. No DNA homology to the chvB region was found in different wild-type strains of A. brasilense, but the introduction of a cosmid containing the Agrobacterium tumefaciens chvA and chvB regions yielded strains in which DNA hybridization with the chvB region was detected, provided that the strains were grown under an antibiotic selective pressure.  相似文献   

11.
In a previous study (Miller, K.J., Kennedy, E.P. and Reinhold, V.N. (1986) Science 231, 48-51) it was reported that the biosynthesis of periplasmic cyclic beta-1,2-glucans by Agrobacterium tumefaciens is strictly osmoregulated in a pattern closely similar to that found for the membrane-derived oligosaccharides of Escherichia coli (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. USA 79, 1092-1095). In addition to the well-characterized neutral cyclic glucan, the periplasmic glucans were found to contain an anionic component not previously reported. Biosynthesis of the anionic component is osmotically regulated in a manner indistinguishable from that of the neutral cyclic beta-1,2-glucan. We now find that the anionic component consists of cyclic beta-1,2-glucans substituted with one or more sn-1-phosphoglycerol residues. The presence of sn-1-phosphoglycerol residues represents an additional, striking similarity to the membrane-derived oligosaccharides of E. coli.  相似文献   

12.
Isolation and characterization of an ndvB locus from Rhizobium fredii   总被引:4,自引:0,他引:4  
A gene (ndvB) in Rhizobium meliloti that is essential for nodule development in Medicago sativa (alfalfa), specifies synthesis of a large membrane protein. This protein appears to be an intermediate in beta-1,2-glucan synthesis by the microsymbiont. Southern hybridization analysis showed strong homology between an ndvB (chvB) probe and genomic DNA of R. fredii but not from Bradyrhizobium japonicum. A cosmid clone containing the putative ndvB locus was isolated from a Rhizobium fredii gene library. The cosmid clone which complemented R. meliloti ndvB mutants for synthesis of beta-1,2-glucans and effective nodulation of alfalfa was mapped and subcloned. Fragment-specific Tn5 mutagenesis followed by homologous recombination into the R. fredii genome indicated that the region was essential for beta-1,2-glucan synthesis and for formation of an effective symbiosis with Glycine max (soybean).  相似文献   

13.
The cyclic beta-1,2-glucans of Rhizobium may function during legume nodulation. These molecules may become highly substituted with phosphoglycerol moieties from the head group of phosphatidylglycerol; diglyceride is a by-product of this reaction (K. J. Miller, R. S. Gore, and A. J. Benesi, J. Bacteriol. 170:4569-4575, 1988). We recently reported that R. meliloti 1021 produces a diacylglycerol kinase (EC 2.7.1.107) activity that shares several properties with the diacylglycerol kinase enzyme of Escherichia coli (W. P. Hunt, R. S. Gore, K. J. Miller, Appl. Environ. Microbiol. 57:3645-3647, 1991). A primary function of this rhizobial enzyme is to recycle diglyceride generated during cyclic beta-1,2-glucan biosynthesis. In the present study, we report the cloning and initial characterization of a single-copy gene from R. meliloti 1021 that encodes a diacylglycerol kinase homolog; this homolog can complement a diacylglycerol kinase deficient strain of E. coli. The sequence of the rhizobial diacylglycerol kinase gene was predicted to encode a protein of 137 amino acids; this protein shares 32% identity with the E. coli enzyme. Analysis of hydropathy and the potential to form specific secondary structures indicated a common overall structure for the two enzymes. Because diglyceride metabolism and cyclic beta-1,2-glucan biosynthesis are metabolically linked, future studies with diacylglycerol kinase mutants of R. meliloti 1021 should further elucidate the roles of the cyclic beta-1,2-glucans in the Rhizobium-legume symbiosis.  相似文献   

14.
Functional chvA and chvB genes are required for attachment of Agrobacterium tumefaciens to plant cells, an early step in crown gall tumor formation. Strains defective in these loci do not secrete normal amounts of cyclic beta-1,2-glucan. Whereas chvB is required for beta-1,2-glucan synthesis, the role of chvA in glucan synthesis or export has not been clearly defined. We found that cultures of chvA mutants contained as much neutral beta-1,2-glucan in the cell pellets as did the wild type, with no detectable accumulation of glucan in the culture supernatant. The cytoplasm of chvA mutant cells contained over three times more soluble beta-1,2-glucan than did the cytoplasm of the wild-type parent. Unlike the wild type, chvA mutants contained no detectable periplasmic glucan. The amino acid sequence of chvA is highly homologous to the sequences of bacterial and eucaryotic export proteins, as observed previously in the case of ndvA, a rhizobial homolog of chvA. Strong sequence homology within this family of export proteins is concentrated in the carboxy-terminal portions of the proteins, but placement of consensus ATP-binding sites, internal signal sequences, and hydrophobic domains are conserved over their entire lengths. These data suggest a model for beta-1,2-glucan synthesis in A. tumefaciens in which glucan is synthesized inside the inner membrane with the participation of ChvB and transported across the inner membrane with the participation of ChvA.  相似文献   

15.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

16.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

17.
Rhizobium meliloti and Agrobacterium tumefaciens synthesize periplasmic cyclic (beta)-(1,2)-glucans during adaptation to hypoosmotic environments. It also appears that these glucans provide important functions during the interactions of these bacteria with plant hosts. A large fraction of these glucans may become modified with anionic substituents such as phosphoglycerol or succinic acid; however, the role(s) of these substituents is unknown. In this study, we show that growth of these bacteria in phosphate-limited media leads to a dramatic reduction in the levels of phosphoglycerol substituents present on the periplasmic cyclic (beta)-(1,2)-glucans. Under these growth conditions, R. meliloti 1021 was found to synthesize anionic cyclic (beta)-(1,2)-glucans containing only succinic acid substituents. Similar results were obtained with R. meliloti 7154 (an exoH mutant which lacks the ability to succinylate its high-molecular-weight exopolysaccharide), revealing that succinylation of the cyclic (beta)-(1,2)-glucans is mediated by an enzyme system distinct from that involved in the succinylation of exopolysaccharide. In contrast, when A. tumefaciens C58 was grown in a phosphate-limited medium, it was found to synthesize only neutral cyclic (beta)-(1,2)-glucans.  相似文献   

18.
The chvA gene product of Agrobacterium tumefaciens is required for virulence and attachment of bacteria to plant cells. Three chvA mutants were studied. In vivo, they were defective in the synthesis, accumulation, and secretion of beta-(1-2)glucan; however, the 235-kilodalton (kDa) protein known to be involved in the synthesis of beta-(1-2)glucan (A. Zorreguieta and R. Ugalde, J. Bacteriol. 167:947-951, 1986) was present and active in vitro. was present and active in vitro. Two molecular forms of cyclic beta-(1-2)glucan, designated types I and II, were resolved by gel chromatography. Type I beta-(1-2)glucan was substituted with nonglycosidic residues, and type II beta-(1-2)glucan was nonsubstituted. Wild-type cells accumulated type I beta-(1-2)glucan, and chvA mutant cells accumulated mainly type II beta-(1-2)glucan and a small amount of type I beta-(1-2)glucan. Inner membranes of wild-type and chvA mutants formed in vitro type II nonsubstituted beta-(1-2)glucan. A 75-kDa inner membrane protein is proposed to be the chvA gene product. chvA mutant inner membranes had increased levels of 235-kDa protein; partial trypsin digestion patterns suggested that the 235-kDa protein (the gene product of the chvB region) and the gene product of the chvA region form a complex in the inner membrane that is involved in the synthesis, secretion, and modification of beta-(1-2)glucan. All of the defects assigned to the chvA mutation were restored after complementation with plasmid pCD522 containing the entire chvA region.  相似文献   

19.
Brucella periplasmic cyclic beta-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic beta-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic beta-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic beta-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-beta-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection.  相似文献   

20.
The periplasmic cyclic beta-1,2-glucan of Agrobacterium tumefaciens is believed to maintain high osmolarity in the periplasm during growth of the bacteria on low-osmotic-strength media. Strains with mutations in the chvA or chvB gene do not accumulate beta-1,2-glucan in their periplasm and exhibit pleiotropic phenotypes, including inability to form crown gall tumors on plants. We examined the effects of medium osmolarity to determine whether some or all of these phenotypes result from suboptimal periplasmic osmolarity. The mutants grew more slowly than wild-type cells and exhibited altered periplasmic and cytoplasmic protein content when cultured in low-osmotic-strength media, but not when cultured in high-osmotic-strength media. These observations support a role for periplasmic glucan in osmoadaptation. However, the mutants were avirulent and exhibited reduced motility regardless of the osmolarity of the medium. Therefore, beta-1,2-glucan may play roles in virulence and motility that are unrelated to its role in osmoadaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号