首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

2.
Microscope immersion oil when administered intraperitoneally or applied to skin in experimental animals substantially increased liver weight, microsomal protein, NADPH-cytochrome c reductase activity, cytochrome P-450 content and the metabolism of the model substrates, ethylmorphine and benzo(a)pyrene. Immersion oil caused the induction of the polycyclic hydrocarbon type of hemoprotein, cytochrome P-448. When applied to skin, the oil also caused an 11-fold increase in benzo(a)pyrene hydroxylase activity at the skin sites.  相似文献   

3.
Using antibodies against electrophoretically homogeneous cytochrome P-448 from rat liver microsomes induced by 3-methylcholanthrene, the changes in the immunologic identity and contents by cytochrome P-448 induced by 3-methylcholanthrene, 3.4-benzpyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were studied. No cytochrome P-448 was detected in the liver microsomes of control or phenobarbital-induced rats. This form of the cytochrome makes up to about 35% of the total content of the CO-binding hemoprotein during TCDD induction and up to 90% during 3-methylcholanthrene and 3,4-benzpyrene induction. On the other hand, 3-methylcholanthrene, 3,4-benzpyrene and TCDD significantly and equally activates the cytochrome P-448-dependent benzpyrene hydroxylase, since the antibodies against cytochrome P-448 inhibit benzpyrene metabolism in the microsomes by 85-90%. The possible reasons for the TCDD-induced increase in the catalytic activity of cytochrome P-448 as compared to the immunologically identical cytochrome P-448 induced by 3-methylcholanthrene and 3,4-benzpyrene, are discussed.  相似文献   

4.
Using immunochemical methods, the identity of cytochrome P-448 from liver microsomes of mice of "inducible" and "non-inducible" lines during induction by xenobiotics of MX-type (3-methylcholanthrene, 3,4-benzpyrene, 2,3,7,8-tetrachlorodibenzodioxin) was established. This hemoprotein form was shown to play a role in 3,4-benzpyrene metabolism. Monospecific antibodies to purified cytochromes P-448 and P-450 were obtained; the cytochrome P-448 content in microsomes was measured by rocket immunoelectrophoresis. The content of cytochrome P-448 in control and phenobarbital-induced microsomes makes up to 10-15% of the total hemoprotein content determinable from the CO-spectra. 3-Methylcholanthrene and 3,4-benzpyrene injected into "non-inducible" mice cause no increase in the content of this hemprotein form, whereas in mice induced with 2,3,7,8-tetrachlorodibenzodioxin it rises to 50%. Under these conditions, an almost 100% inhibition of 3,4-benzpyrene metabolism by antibodies to cytochrome P-448 is observed. Antibodies against cytochrome P-448 obtained from liver microsomes of 3-methylcholanthrene-induced mice cause a 90% inhibition of 3,4-benzpyrene in microsomes induced with 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzodioxin.  相似文献   

5.
1. The role of protein kinase C (PKC) in B-naphthoflavone (BNF) induction of CYP1A1 in rainbow trout hepatocytes was investigated.2. Primary cultures of rainbow trout hepatocytes treated with BNF for 24 hr showed an increase in microsomal 7-ethyoxyresorufm-O-deethylase (EROD) activity compared to cells treated with vehicle (DMSO) only.3. Increases in EROD activities were proportional to increased concentrations of BNF from 1 to 10 nM reaching a plateau at higher concentrations (20–100 nM) of BNF.4. Western blot analysis using specific antibody (LM4b) against CYP1A1 showed that changes in microsomal CYP1A1 protein paralleled that of EROD activity.5. The induction of EROD activity by BNF required both protein and RNA synthesis since the process was blocked by both cycloheximide and actinomycin D.6. Pretreatment of hepatocytes with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to a dose dependent suppression of BNF-induced EROD activity and CYP1A1 content. TPA alone had no effect on hepatic EROD activity and CYP1A1 protein level.7. Pretreatment with sn-1,2 didecanoylglycerol, a PKC activator, had no effect on BNF-induced EROD activity in these cells.8. Pretreatment of cells with staurosporine, a PKC inhibitor, effectively blocked BNF-induced EROD activity.9. PKC may play a role in the induction of CYP1A1 gene expression in fish liver by BNF.  相似文献   

6.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   

7.
In rats treated with phenobarbital for 3 days and simultaneously fed a semisynthetic diet containing 1.0% orotic acid, the extent of the increases in liver microsomal phosphatidylcholine, phosphatidylethanolamine, total RNA, total protein, and cytochrome P-450 were significantly greater than they were in rats treated identically with phenobarbital but without dietary orotic acid. This is attributed primarily to the stimulation of hepatic phosphatidylcholine synthesis by dietary orotic acid. In the absence of phenobarbital, orotic acid was shown to cause some increase in liver smooth endoplasmic reticulum components, but not cytochrome P-450. Orotic acid also decreased the activity of microsomal phosphatidylethanolamine N-methyltransferase, which may have contributed to the increase in the microsomal content of phosphatidylethanolamine. The hypothesis is advanced that phospholipid availability is a limiting factor in the hepatic response to phenobarbital. When more phospholipid is available to provide the structural framework for biogenesis of endoplasmic reticulum, all of the hepatic actions of phenobarbital, including induction of cytochrome P-450, are amplified.  相似文献   

8.
The application of hexachlorobenzene (HCB), pentachlorophenol (PCP) and 2,4,5-trichlorophenol (TCP) to female rats led to an induction of both the microsomal and the nuclear cytochrome P-450 system in the liver. The increase of th mixed-function hydroxylase activities examined (7-ethoxycoumarin deethylase, 7-ethoxyresorufin deethylase, NADPH-dependent cytochrome c reductase, aminopyrine demethylase, benzpyrene hydroxylase) did not correlate strictly with the cytochrome P-450 content. Depending on the inducers and the substrates used, the content and the activity of the cytochrome P-450 were essentially smaller in the nuclei than in the microsomes. It was striking that in the nuclei those activities (benzpyrene hydroxylase, 7-ethoxyresorufin deethylase, 7-ethoxycoumarin deethylase) were preferably induced which can be attributed to the methyl-cholanthrene-induced form of the cytochrome P-450 (cytochrome P-448). These results suggest, also in the light of findings of other authors, the induction of different species of cytochrome P-450 in the nuclei and microsomes.  相似文献   

9.
The effect of phenobarbital treatment on the nuclear ADP-ribosyl transferase activity has been studied in parallel with microsomal cytochrome P-450 concentration and related mono-oxygenase activities, in rat liver. A marked activation of the ADP-ribosyl transferase was observed 24 h after phenobarbital administration. The chronological study performed between 0-6 days after phenobarbital treatment showed a sharp increase in this nuclear enzyme activity, to approximately equal to 270% of the control value produced in 48 h. The administration of 5'-methylnicotinamide in vivo, an inhibitor of ADP-ribosyl transferase activity in vitro, produced a decrease both of the induction of liver microsomal cytochrome P-450 mono-oxygenases and nuclear ADP-ribosyl transferase activity. The role of nuclear ADP-ribosyl transferase in the adaptative response of the liver cell to phenobarbital is discussed.  相似文献   

10.
The electrophoretic patterns of the polypeptides of the microsomal membrane fraction of the livers of rats treated with various agents were compared. Administration of phenobarbital, or of benzo[a]pyrene or 3-methylcholanthrene, resulted in specific increases of membrane polypeptides corresponding to cytochrome P-450 and cytochrome P-448 species respectively. Administration of 2-acetylaminofluorene, diethylnitrosamine, dimethylnitrosamine, N,N-dimethyl-4-aminoazobenzene or 3′-methyl-N,N-dimethyl-4-aminoazobenzene resulted in a marked increase of 2 other polypeptides, migrating just ahead of the phenobarbital-responsive cytochrome P-450 species. Preliminary evidence suggests that at least one of these 2 polypeptides may contain heme. The results indicate that administration of these N-containing carcinogens to rats results in a common electrophoretic pattern of induction of 2 specific microsomal membrane polypeptides. This pattern is different from those observed with classical inducers of the rat liver mixed-function oxidase system.  相似文献   

11.
The effects of pretreatment with symmetrically dihalogenated biphenyls (DXBs, X-F, Cl(C), Br(B) and I) on rat liver drug metabolism enzymes were investigated. 4,4'-DFB, -DCB, and -DBB as well as 2,2'-DFB appeared to be inducers of microsomal cytochrome P-450-linked monoxygenases (N-demethylases of aminopyrine and ethylmorphine). However, no structure-induction relationship was found. 4,4'-DXBs also induced a cytochrome P-448-linked mono-oxygenase (ethoxyresorufin O-deethylase), and their order of induction potential seemed to parallel the increase of the size of the halogen substituent. Therefore, 4,4'-DXB's may be categorized as mixed-type inducers, the cytochrome P-450 component being the more pronounced. Data on the cytochrome P-448 induction by dihalogenated biphenyls with only para substituents may be considered as a refinement of the previously described structure-activity relationship in this respect. All of the DXBs except 3,3'-DCB and 4,4'-DIB, enhanced, like phenobarbital, the activity of UDP-glucuronyltransferase toward 4-hydroxybiphenyl. Only 4,4'-DFB was able to induce the activity of glutathione S-transferase toward 1,2-epoxy-3-(p-nitrophenoxy)propane. Studies after 4,4'-DBB-treatment revealed, like phenobarbital, a preferential induction of ethylmorphine N-demethylase on rough endoplasmic reticulum-derived microsomes, whereas UDP-glucuronyltransferase activity toward 4-hydroxybiphenyl was induced to a larger extent on smooth endoplasmic reticulum microsomes, suggesting a dissimilar enzyme induction in microsomal subfractions.  相似文献   

12.
We have examined the induction of drug metabolizing enzymes in rat liver microsomes by azo dye, 1-(p-phenylazophenylazo)-2-naphthol (Sudan III). Marked increases were observed in the levels of cytochrome P-448 as well as in p-nitroanisole O-demethylase (p-NAD), amaranth (AR) and neoprontosil reductases (NPR) and 7-ethoxycoumarin O-deethylase (ECD) activities. On the other hand, aminopyrene N-demethylase activity was not significantly increased. Further, induced ECD activity was inhibited 90% by a specific antibody against cytochrome P-448 while the inhibition observed with an antibody against cytochrome P-450 was less than 25%. Simultaneous administration of Sudan III and 3-methylcholanthene (3-MC) induced cytochrome P-448 up to a level brought about by either Sudan III or 3-MC treatment alone. In contrast, Sudan III did not induce cytochrome P-448 in the 3-MC insensitive DBA/2 mouse. Solubilized microsomes from Sudan III-treated rats showed an identical sodium dodecyl sulfate polyacrylamide gel electrophoretic (SDS-PAGE) pattern with those from 3-MC-treated animals. It is concluded that the cytochrome P-448 induced in liver by Sudan III is very similar to that induced by 3-MC. Sudan III also induced UDP-glucuronyltransferase activity towards 1-naphthol and estradiol. It did not induce NADPH-cytochrome c reductase, nor any of the enzymes which constitute the microsomal electron transport chain except for cytochrome P-448.  相似文献   

13.
1. Ethoxyresorufin O-deethylase (EROD) activity, aldrin epoxidase (AE) activity, cytochrome P-450 content, and levels of cytochrome P-450E (the major BNF-inducible P-450 form and primary EROD catalyst in scup) or its homologues were measured in hepatic microsomes isolated from Fundulus heteroclitus, scup (Stenotomus chrysops) and brook trout (Salvelinus fontinalis) treated with beta-naphthoflavone (BNF) or phenobarbital (PB). 2. In all three teleost species, BNF treatment caused expected increases in P-450 content, EROD activity and P-450E level; but either no change or a slight decrease in AE turnover rate (nmol/min/nmol P-450). 3. Polyclonal antibodies to P-450E did not inhibit AE activity in microsomes from BNF-treated scup, confirming that this major BNF-inducible P-450 form does not catalyze AE activity in fish. 4. In contrast, PB treatment did not affect hepatic AE activity, P-450 content or levels of "P-450E" in F. heteroclitus, but did variably affect EROD activity which was suppressed in one experiment and elevated in another. 5. The results indicate that (i) contrary to previous reports, neither PB nor MC-type inducers increase AE activity in F. heteroclitus, (ii) MC-type inducers do not affect AE activity in the other teleost species examined, and (iii) AE activity is not a reliable indicator of P-450 induction by environmental chemicals. 6. We emphasize the need to establish the mechanism of PB action, and the nature of any fish P-450 forms analogous to PB-inducible forms in mammals in order to conclusively evaluate PB-responses in fish.  相似文献   

14.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

15.
The N-oxidation of NN-dimethylaniline was studied by using a reconstituted rabbit liver microsomal enzyme system consisting of highly purified cytochrome P-448, NADPH-cytochrome c reductase and lipid factor. Both cytochrome P-448 and NADPH-cytochrome c reductase were required for optimum N-oxygenating activity; the catalytic capacity of the reductase fraction for supporting N-oxide formation varied with the isolation procedure applied. Addition of microsomal lipids to the assay media stimulated N-oxidation of the arylamine. N-Oxide formation appeared to be not generally controlled by electron transfer from cytochrome b5 to cytochrome P-448. The present work confirms that cytochrome P-448 can mediate about 44% of the rabbit liver microsomal N-oxidation of NN-dimethylaniline, thus reinforcing the existence of at least two distinct tertiary amine N-oxidases, i.e. haemoprotein and flavoprotein oxidase, in liver microsomal fractions.  相似文献   

16.
Disulfiram and diethyldithiocarbamate were administered to rats for 4 days alone (300 mg/kg, daily, per os) or in combination with phenobarbital (80 mg/kg, daily, i.p.), in order to observe the effects of these compounds on the microsomal membrane components and on the mixed-function oxygenase system. Both disulfiram and diethyldithiocarbamate increased the liver to body weight ratio, and the total hepatic protein content. Disulfiram significantly increased also the microsomal protein and phospholipid contents. Diethyldithiocarbamate and disulfiram partially prevented the increase of microsomal protein and phospholipid contents caused by phenobarbital. Disulfiram and diethyldithiocarbamate decreased the amount of cytochrome P-450 and P-420, and the activity of p-nitroanisole O-demethylase. These changes were more pronounced after diethyldithiocarbamate than after disulfiram treatment. On the contrary, the activity of NADPH-cytochrome c reductase was enhanced only by disulfiram. The induction by phenobarbital of cytochrome P-450 and p-nitrosanisole O-demethylase was partially prevented on concomitant treatment with disulfiram and diethyldithiocarbamate. These compounds. however, had an additive effect with phenobarbital in enhancing the microsomal NADPH-cytochrome c reductase activity.  相似文献   

17.
The activity of cytochrome P-450 dependent monooxygenase system from rat liver microsomes after induction by phenobarbital and 3-methylcholantrene in early neonatal period (3-16 days after birth) was studied. It was found that the total amount of cytochrome P-450 increases after injection of these inducers in neonatal rats of all age groups. In parallel, in the case of 3-methylcholantrene induction the benz(a)pyrene hydroxylase and 7-ethoxyresorufin deethylase activities increase; phenobarbital induction causes a rise in the benzphetamine-N-demethylase and benz(a)pyrene hydroxylase activities. Immunochemical analysis involving the use of antibodies specifically directed against cytochrome P-450 of adult rats revealed that the level of cytochrome P-450 in the case of 3-methylcholantrene induction increases from 5 to 50%, whereas that of cytochrome P-450 upon phenobarbital induction increases from 5 to 40% in liver microsomes of 3- and 16-day-old rats. The mode of inhibition of various substrates metabolism by antibodies in neonatal rat microsomes suggests that the 3-methylcholantrene-induced cytochrome P-448, like in adult rats, participates in the hydroxylation of benz(a)pyrene and O-deethylation of 7-etoxyresorufin. The participation of phenobarbital-induced cytochrome P-450 in the metabolism of benzphetamine and aldrin in neonatal rats is much lower than in the adult ones. The metabolism of benz(a)pyrene in phenobarbital-induced neonatal rat microsomes in all age groups is not inhibited by antibodies. The age-dependent differences in inhibition of metabolism and the increase in the benz(a)pyrene hydroxylase activity in phenobarbital-induced rats suggest that the spectrum of inducible forms of cytochrome P-450 in neonatal rats differ from that in adult animals.  相似文献   

18.
The administration of polycyclic aromatic compounds such as beta-naphthoflavone or 3-methylcholanthrene is known to cause the induction of many liver microsomal monoxygenase activities and the appearance of a distinct cytochrome called P-448 in genetically responsive, but not in nonresponsive, inbred mouse strains. However, the administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin induces these activities and cytochrome P-448 formation to the same extent in both responsive and nonresponsive inbred strains. In contrast, phenobarbital or pregnenolone-16 alpha-carbonitrile induces in both responsive and nonresponsive strains a different profile of enzyme activities and the appearance of cytochrome P-450 (rather than cytochrome P-448). In the present studies, electrophoresis of liver microsomal proteins from inbred C57BL/6N and DBA/2N and recombinant inbred AKXL-38 and AKXL-38A mouse strains revealed the presence of four polypeptides whose relative staining intensity could be correlated with the induction state of the microsomes as determined by enzymatic and spectral methods. Of these four bands, Band 4 (55,000 daltons) was increased whenever spectral measurements revealed an increase in the cytochrome P-448 content due to administration of beta-naphthoflavone or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Administration of pregnenolone-16alpha-carbonitrile caused an increase in Band 3 (54,000 daltons), whereas administration of phenobarbital caused an increase primarily in Band 2 (51,000 daltons) but also smaller increases in Band 1 (49,000 daltons) and Band 4. The changes observed for phenobarbital and pregnenolone-16alpha-carbonitrile were the same for both responsive and nonresponsive strains. The same electrophoretic technique was used to measure the incorporation of radioactive leucine into microsomal proteins. Microsomes were prepared from liver combined from responsive mice (C57BL/6N) treated with beta-naphthoflavone and L-[14C]leucine and nonresponsive mice (DBA/2N) treated with beta-naphthoflavone and L-[3H-4,5]leucine. A significant increase in the 14C/3H ratio was observed for Band 4, and decreases were seen for Bands 1 and 2. In similar experiments with other mice and phenobarbital as the inducing agent with L-[14C]leucine and the vehicle alone with L-[3H-4,5]leucine, the 14C/3H ratio was markedly increased for Band 2, and smaller increases were observed for Bands 1 and 4. These results and other data presented indicate that the increased formation of cytochrome P-448 and P-450 by beta-naphthoflavone and phenobarbital, respectively, is primarily the result of an increased rate of de novo protein synthesis rather than a decreased degradation rate or a conversion of pre-existing polypeptides.  相似文献   

19.
Treatment of adult, male rabbits and rats with 3-methylcholanthrene results in the formation of hepatic microsomal cytochrome P-448. In the rat, this occurs coincidently with an increase in hepatic microsomal benzpyrene hydroxylase activity. In the rabbit, benzpyrene hydroxylase activity is decreased following treatment with 3-methylcholanthrene. Benzpyrene hydroxylase activity in solubilized, reconstituted mixed-function oxidase systems containing rat cytochrome P-448 is about seven times higher than in systems containing rabbit cytochrome P-448. Evidence obtained by spectral analysis suggests that rabbit P-448 is combined with a type I compound. Residual 14C-3-methylcholanthrene does not appear to be responsible for the differences observed between rat and rabbit cytochrome P-448.  相似文献   

20.
Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号