首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A soluble construct consisting of a plasmid carrying the gene of the SV40 large T-antigen and an insulin-poly-L-lysine conjugate is able to selectively transfect PLC/PRF/5 human hepatoma cells which possess insulin receptors. Transfection can be efficiently competed by excess free insulin. To examine intracellular transport of the construct, it was fluorescently labeled and its accumulation on and in cells visualized by video-enhanced microscopy and quantitative confocal laser scanning microscopy. After 2 h at 37 degrees C, the labeled construct was found predominantly in intracellular acidic compartments, with a substantial portion of fluorescence localized both near and in the cell nucleus. Binding, endocytosis, and nuclear localization of the labeled conjugate could all be competed by excess free insulin, thus indicating that entry of the conjugate into cells was specifically mediated by the insulin receptor.  相似文献   

2.
Cellular entry of peptide, protein, and nucleic acid biopharmaceuticals is severely impeded by the cell membrane. Linkage or assembly of such agents and cell-penetrating peptides (CPP) with the ability to cross cellular membranes has opened a new horizon in biomedical research. Nevertheless, the uptake mechanisms of most CPP have been controversially discussed and are poorly understood. We present data on two recently developed oligocationic CPP, the sweet arrow peptide SAP, a gamma-zein-related sequence, and a branched human calcitonin derived peptide, hCT(9-32)-br, carrying a simian virus derived nuclear localization sequence in the side chain. Uptake in HeLa cells and intracellular trafficking of N-terminally carboxyfluorescein labeled peptides was studied by confocal laser scanning microscopy and flow cytometry using biochemical markers in combination with quenching and colocalization approaches. Both peptides were readily internalized by HeLa cells through interaction with the extracellular matrix followed by lipid raft-mediated endocytosis as confirmed by reduced uptake at lower temperature, in the presence of endocytosis inhibitors and through cholesterol depletion by methyl-beta-cyclodextrin, supported by colocalization with markers for clathrin-independent pathways. In contrast to the oligocationic SAP and hCT(9-32)-br, interaction with the extracellular matrix, however, was no prerequisite for the observed lipid raft-mediated uptake of the weakly cationic, unbranched hCT(9-32). Transient involvement of endosomes in intracellular trafficking of SAP and hCT(9-32)-br prior to endosomal escape of both peptides was revealed by colocalization and pulse-chase studies of the peptides with the early endosome antigen 1. The results bear potential for CPP as tools for intracellular drug delivery.  相似文献   

3.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

4.
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position, by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS, but not control protein TetR, specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types, including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison, binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide, demonstrate specific binding of PNA to plasmid DNA. However, although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS, control bis-PNA without an NLS sequence gave a similar increase, suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall, we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.  相似文献   

5.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

6.
The catalytic (C) subunit of cyclic AMP (cAMP) dependent protein kinase (PKA) has previously been shown to enter and exit the nucleus of cells when intracellular cAMP is raised and lowered, respectively. To determine the mechanism of nuclear translocation, fluorescently labeled C subunit was injected into living REF52 fibroblasts either as free C subunit or in the form of holoenzyme (PKA) in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine, respectively. Quantification of nuclear and cytoplasmic fluorescence intensities revealed that free C subunit nuclear accumulation was most similar to that of macromolecules that diffuse into the nucleus. A glutathione S-transferase-C subunit fusion protein did not enter the nucleus following cytoplasmic microinjection. Puncturing the nuclear membrane did not decrease the nuclear concentration of C subunit, and C subunit entry into the nucleus did not appear to be saturable. Cooling or depleting cells of energy failed to block movement of C subunit into the nucleus. Photobleaching experiments showed that even after reaching equilibrium at high [cAMP], individual molecules of C subunit continued to leave the nucleus at approximately the same rate that they had originally entered. These results indicate that diffusion is sufficient to explain most aspects of C subunit subcellular localization.  相似文献   

7.
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.  相似文献   

8.
9.
cAMP-dependent protein kinase mediates a variety of cellular responses in most eukaryotic cells. Many of these responses are cytoplasmic, whereas others appear to require nuclear localization of the catalytic subunit. In order to understand further the molecular basis for subcellular localization of the catalytic subunit, the effect of the heat stable protein kinase inhibitor (PKI) was investigated. The subcellular localization of the catalytic (C) subunit was determined both in the presence and absence of PKI, by microinjecting fluorescently labeled C subunit into single living cells. When injected alone, a significant fraction of the dissociated C subunit localized to the nucleus. When coin-injected with an excess of PKI, little of the C subunit localized to the nucleus, suggesting that accumulation of catalytic subunit in the nucleus requires either enzymatic activity or a nuclear localization signal. Inactivation of the catalytic subunit in vitro by treatment with N-ethylmaleimide did not prevent localization in the nucleus, indicating that enzymatic activity was not a prerequisite for nuclear localization. In an effort to search for a specific signal that might mediate nuclear localization, a complex of the catalytic subunit with a 20-residue inhibitory peptide derived from PKI (PKI(5-24)) was microinjected. In contrast to intact PKI, the peptide was not sufficient to block nuclear accumulation. In the presence of PKI(5-24), the C subunit localized to the nucleus in a fashion analogous to that of dissociated, active C subunit despite evidence of no catalytic activity in situ. Thus, nuclear localization of the C subunit appears to be independent of enzymatic activity but most likely dependent upon a signal. The signal is apparently masked by both the regulatory subunit and PKI but not by the inhibitory peptide.  相似文献   

10.
Oligonucleotide models bearing 6, 12 or 18 histamine residues were synthesized on solid support and labeled with fluorescein. Only the oligo with 6 histamine residues showed a high uptake in HeLa cells with a nuclear localization. Experiment a 4 degrees C or with bafilomicyn A1 suggest that uptake proceeded by an endocytosis mechanism followed by a destabilization of the membrane. Once in the cytoplasm the oligo reached rapidly the nucleus.  相似文献   

11.
Intracellular trafficking of Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. In the present study, block copolymer micelles (BCMs) were labeled with the Auger electron emitter indium-111 ((111)In) and loaded with the radiosensitizer methotrexate. HER2 specific antibodies (trastuzumab fab) and nuclear localization signal (NLS; CGYGPKKKRKVGG) peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake and intracellular distribution of the multifunctional BCMs were evaluated in a panel of breast cancer cell lines with different levels of HER2 expression. Indeed cell uptake was found to be HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS peptides to the surface of BCMs was found to result in a significant increase in nuclear uptake of the radionuclide (111)In. Successful nuclear targeting was shown to improve the antipoliferative effect of the Auger electrons as measured by clonogenic assays. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and (111)In in all breast cancer cell lines evaluated.  相似文献   

12.
Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4-12 degrees C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 degrees C incubations. At temperatures between 12 and 30 degrees C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 degrees C. Small increases in the extracellular peptide concentration in 37 degrees C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-beta-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane.  相似文献   

13.
Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.  相似文献   

14.
Oligonucleotide models bearing 6, 12 or 18 histamine residues were synthesized on solid support and labeled with fluorescein. Only the oligo with 6 histamine residues showed a high uptake in HeLa cells with a nuclear localization. Experiment a 4°C or with bafilomicyn A1 suggest that uptake proceeded by an endocytosis mechanism followed by a destabilization of the membrane. Once in the cytoplasm the oligo reached rapidly the nucleus.  相似文献   

15.
目前关于腺病毒感染及胞内运输的分子机制研究主要来源于C亚群腺病毒在肿瘤细胞系中的研究结果。腺病毒对靶细胞的感染及胞内运输大致分为几步:病毒与细胞表面受体的特异结合,胞吞介导的病毒内化,病毒逃脱胞内体进入细胞质,病毒沿着微管运输至核孔,病毒基因组入核。病毒胞内运输效率极高,感染后1 h,80%以上的病毒基因组被送至核内。但是腺病毒胞内的运输方式会因以下几个因素变化而产生差异:靶细胞类型,细胞生理状态,病毒血清型。文中对腺病毒感染靶细胞及胞内运输的已有分子机制进行综述,为临床基因治疗用途的病毒载体研发提供思路。  相似文献   

16.
The US11 gene product of herpes simplex virus is an abundant virion structural protein with RNA-binding regulatory activity. Its carboxyl-terminal half consists of tandem tripeptide repeats of the sequence RXP. We demonstrate that the US11 protein has intercellular trafficking activity and accumulates in the nucleolus when singly expressed in cultured cells, and that the RXP repeats are responsible for this activity. These same properties were also observed in cells expressing a fusion protein linking US11 to the green fluorescent protein. Furthermore, exogenous US11 protein was internalized by cells at 4 degrees C, which suggests that US11 protein uptake occurs primarily through an energy-independent pathway.  相似文献   

17.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   

18.
The tomato yellow leaf curl virus (TYLCV) found in Israel is a whitefly-transmitted monopartite geminivirus. Although geminiviruses have been found in the nuclei of phloem-associated cells, the mechanism of viral invasion is poorly understood. The possible role of the TYLCV capsid protein (CP), the only known component of the viral coat, in virus transport into the host cell nucleus was investigated by monitoring its specific nuclear accumulation in plant and insect cells. CP was fused to the β-glucuronidase (GUS) reporter enzyme to assay nuclear import in petunia protoplasts, and micro-injection of purified fluorescently labeled CP was used to examine its nuclear uptake in Drosophila embryos. Both assays demonstrated that TYLCV CP is transported into plant-and insect-cell nuclei by an active process of nuclear import via a nuclear localization signal (NLS)-specific pathway. Using the GUS assay and deletion analysis, the TYLCV CP NLS sequence was identified in the amino-terminus of the protein.  相似文献   

19.
20.
The signal sequence of a nuclear-directed protein encodes the necessary information for targeting the attached proteins to the cell nucleus. The sequence/structural requirements for a functional transport signal were explored with a series of peptides derived from the simian virus 40 large T-antigen nuclear signal 126–134 (CPKKKRKVED-NH2, wild type) conjugated to bovine serum albumin (BSA) through an N-terminal Cys (1) with m-maleimidobenzoyl-N-hydroxysuccinimide ester. Nuclear accumulation was virtually complete 15 min after microinjection into green monkey kidney cells (TC-7). Peptides with Asn, Orn, and Gln substituted for Lys128, the reverse wild-type peptide (DEVKRKKKPC-NH2) and the long 34-residue wild-type analogue (CYDDEATADSQHSTPPKKKRKVEDPKDFESELLS-NH2), were synthesized and conjugated similarly to BSA. The Orn peptide and the 34-residue wild-type analogue conjugated to BSA also transported to the nucleus but at a slower rate than 1. The reverse wild-type, Asn- and Gln-BSA conjugates of these signal analogues did not show transport to the nucleus after 6 h of incubation. In an effort to learn if such signal sequences would also target a small molecule such as a fluorescent tag to the nucleus, 1 fluorescently tagged with monobromobimane was prepared and microinjected into TC-7 cells. The peptide was distributed throughout the cell. These results support the notion that a positively charged residue at position 128 is needed for rapid nuclear transport and that the intracellular transport machinery has spatial recognition. The results with fluorophore-peptide conjugates suggest nuclear localization of these low molecular weight peptides will be difficult to attain even if attached to a functional nuclear localization sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号