首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
基于2017年在宁夏荒漠草原设立的降水量(减少50%、减少30%、自然降水、增加30%以及增加50%)和N添加(0和5 g·m~(-2)·a~(-1))野外试验,研究了植物和土壤微生物C∶N∶P生态化学计量特征,分析二者与土壤C∶N∶P生态化学计量特征及其他土壤因子的关系,以探讨降水格局改变和大气N沉降增加下荒漠草原植物和土壤微生物C∶N∶P平衡特征及其主要影响因素。结果表明:(1)减少降水量对荒漠草原植物和土壤微生物C∶N∶P生态化学计量特征的影响较小,反映了二者对短期干旱的适应性;增加降水量降低了植物和土壤微生物生物量N和P含量,不同程度地提高了C∶N和C∶P,但其影响程度与N添加有关。(2)增减降水量条件下, N添加对植物生态化学计量特征影响较小,但对土壤微生物C∶N∶P生态化学计量特征影响较大,尤其在增加降水量条件下表现得更明显,意味着降水激发了N添加效应。(3)植物全N含量、N∶P以及土壤微生物生物量N含量的内稳性较低,可较好地反映土壤N供给水平以及N、P受限类型。(4)与植物C∶N∶P生态化学计量特征关系较强的土壤因子为速效P含量、磷酸酶活性、电导率、C∶P和有机C含量,与土壤微生物C∶N∶P生态化学计量特征关系较强的土壤因子有电导率、含水量、蔗糖酶活性和磷酸酶活性,表明植物和土壤微生物C∶N∶P平衡特征主要受其他土壤因子的调控,而非土壤元素平衡关系。  相似文献   

2.
高寒草甸根际土壤化学计量特征对草地退化的响应   总被引:1,自引:0,他引:1  
为深入理解高寒草甸退化过程中根际和非根际土壤中碳(C)、氮(N)和磷(P)的化学计量特征和土壤养分的变化规律,并获得退化草地土壤养分和微生物养分限制的信息,本研究以祁连山东缘4个不同退化程度高寒草甸为对象,通过采集优势植物根际土(0~2 mm)和非根际土(0~10 cm)的土壤样品,分析了土壤C、N、P浓度和比例,土壤中可提取的C、N、P(Ext-C、Ext-N、Ext-P)的浓度和比例,参与C、N、P循环的胞外酶(β-1,4-葡萄糖苷酶、N-乙酰-β-D-葡萄糖苷酶、亮氨酸基肽酶、酸性磷酸酶)的活性和比例,以及土壤微生物生物量碳、氮、磷(MBC、MBN、MBP)的含量及比例.结果表明: 高寒草甸退化过程中优势植物根际养分含量高于非根际养分.随着高寒草甸退化程度的加剧,其土壤的C∶N∶P发生重大改变,表现出C∶N的严重失调,表明草地退化程度越高受到N的限制越严重.不同退化程度的高寒草甸中,经过对数转化的根际C-、N-和P-胞外酶的比例均偏离了在全球生态系统分析中获得的1∶1∶1比例,表明高寒草甸退化主要受到强烈的N限制,P次之.高寒草甸地区土壤全量养分含量较高,土壤中的速效养分较低,成为阻碍牧草生长的限制因子.  相似文献   

3.
生物结皮的形成和发育显著影响土壤碳(C)、氮(N)、磷(P)循环及其化学计量特征,土壤微生物如何适应环境资源的化学计量变化仍不明确。本研究以三峡库区苔藓结皮为对象,分析结皮盖度(0、1%~20%、20%~40%、40%~60%、60%~80%和80%~100%)对土壤理化性质(0~5和5~10 cm土层)、微生物生物量和胞外酶活性[(β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)]的影响,探索土壤-微生物-胞外酶C∶N∶P化学计量特征间的协变性。结果表明: 生物结皮发育显著提高了土壤黏粒、水稳性团聚体和土壤C、N、P含量,显著降低了土壤容重和砂粒含量;微生物生物量C、N、P和胞外酶活性均随结皮盖度的增大而显著增加;土层深度对土壤理化性质及C∶N∶P均无显著影响,但显著影响微生物生物量、胞外酶活性及BG∶AP和NAG∶AP。相关分析显示,土壤C、N、P含量与微生物生物量和胞外酶活性呈显著正相关,与BG∶NAG呈显著负相关,与NAG∶AP呈显著正相关,但与微生物生物量C∶N∶P无显著相关性;土壤-微生物、微生物-胞外酶C∶N∶P相关性均不显著,BG∶NAG∶AP随着微生物与土壤间C∶N∶P化学计量不平衡性的增加而逐渐降低。表明微生物养分代谢同时受N和P的限制,且P的限制较强烈,微生物可以通过调整自身生物量以及胞外酶C∶N∶P适应生物结皮发育驱动的土壤化学计量变化,从而维持内稳态。  相似文献   

4.
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。  相似文献   

5.
为探讨荒漠草地沙漠化对"土壤-微生物-胞外酶"系统生态化学计量的影响机理,该研究采用空间序列代替时间演替的方法,研究了宁夏盐池荒漠草地沙漠化过程中土壤、土壤微生物及土壤胞外酶碳(C)、氮(N)、磷(P)生态化学计量的变异特征。结果表明:(1)随着荒漠草地沙漠化的不断加剧,土壤C、N、P含量和土壤C:P、N:P均呈降低趋势,而土壤C:N逐渐增加。(2)荒漠草地沙漠化过程中,土壤微生物生物量C (MBC):微生物生物量P (MBP)、微生物生物量N (MBN):MBP和土壤β-葡萄糖苷酶(BG):N-乙酰氨基葡萄糖苷酶(NAG)逐渐降低,而土壤BG:磷酸酶(AP)和NAG:AP基本表现为增加趋势。(3)随着荒漠草地沙漠化程度的加剧,土壤微生物C利用效率CUEC:N和CUEC:P与土壤微生物N利用效率NUEN:C和土壤微生物P利用效率PUEP:C的变化趋势相反。(4)荒漠草地土壤、土壤微生物生物量和土壤胞外酶C:N化学计量(C:N, MBC:MBN, BG:NAG)与土壤、土壤微生物生物量和土壤胞外酶N:P化学计量(N:P,MBN:MBP,NAG:AP)显著负相关,而土壤和胞外酶C:N化学计量(C:N,BG:NAG)与土壤和胞外酶C:P化学计量(C:P,BG:AP)显著正相关。土壤N:P与土壤MBN:MBP显著正相关,而与土壤NAG:AP显著负相关。分析表明,荒漠草地沙漠化过程中土壤微生物生物量及胞外酶活性随着土壤养分的变化而发生变化;微生物-胞外酶C:N:P生态化学计量与土壤养分存在协变关系,为理解荒漠草地土壤-微生物系统C、N、P循环机制提供理论依据。  相似文献   

6.
为探明高原草甸土壤微生物对短期氮沉降的响应,以纳帕海典型高寒草甸云雾薹草群落为对象,野外原位布设低氮(5 g N·m-2·a-1)、中氮(10 g N·m-2·a-1)和高氮(15 g N·m-2·a-1)3种施氮处理,研究氮沉降引起高寒草甸植物多样性及土壤性质变化对微生物生物量碳氮的影响。结果表明:氮添加显著增加土壤微生物生物量碳氮及其熵值,中氮处理下微生物生物量碳增量最高,达139.3%;微生物生物量碳氮的垂直变化表现为沿土层显著降低,降幅为24.1%~75.1%。氮添加显著提高群落地上生物量,降低Shannon和Simpson多样性,变幅达6.6%~65.4%;氮添加显著降低土壤pH,增加土壤有机质、全氮、铵态氮和硝态氮含量,且在中氮处理下变幅(7.0%~511.1%)最大;土壤pH随土层加深而增大,而其他理化指标则沿土层加深而显著减少,变幅达19.5%~91.2%。结构方程模型表明,土壤铵态氮、硝态氮和有机质对微生物生物量起促进作用,而土壤pH和植...  相似文献   

7.
青藏高原典型草地植被退化与土壤退化研究   总被引:4,自引:0,他引:4  
采用野外样方调查和室内分析法,探讨了青藏高原不同退化程度高寒草原和高寒草甸植被群落结构、植物多样性、地上-地下生物量、根系分配及土壤理化特性差异。研究表明:(1)随着退化程度加剧,高寒草原禾草优势地位未改变,高寒草甸优势种莎草逐渐被杂类草取代。(2)随着退化程度加剧,高寒草原地上生物量显著降低(P<0.05),高寒草甸地上生物量先保持稳定再下降。高寒草甸地下生物量较高寒草原地下生物量对退化响应更敏感。(3)高寒草原退化过程中,莎草地上物生量变化不明显(P>0.05),禾草地上生物量贡献率由88.12%减少至53.54%,杂类草地上生物量贡献率由0.08%增加至42.81%;高寒草甸退化过程中,禾草和杂类草地上生物量先增加后减小,莎草地上生物量占比由69.15%减少至0.04%,杂类草地上生物量占比由12.56%增加至92.61%。(4)随着退化程度加剧,高寒草原根系向浅层迁移,高寒草甸根系向深层迁移。(5)退化对高寒草甸土壤含水量(θ)、土壤有机碳(SOC)、总氮(TN)及土壤容重(BD)影响均比高寒草原更强烈。本研究对青藏高原退化草地恢复治理具有重要的参考价值。  相似文献   

8.
游惠明 《生态学杂志》2022,(10):1909-1915
传统的红树林森林经营过程中片面追求红树植物的净化效益,忽视外源污染对土壤-微生物界面的伴生影响。本研究依托潮汐模拟实验室,设计有、无秋茄植物栽植2套模拟系统,探讨5个氮浓度输入对秋茄植物-土壤-微生物碳氮化学计量及其稳态特征的影响。结果表明:中低浓度氮添加有利于提高土壤微生物生物量C、N,而高浓度抑制。外源氮的添加对秋茄植物的C、N化学计量学特征影响不显著(P>0.05),但对土壤C、微生物生物量C、N及微生物生物量C∶N影响极显著(P<0.01);红树植物的存在促进了土壤微生物活性,尤其微生物生物量N提高11%~45%;土壤养分与秋茄根及土壤微生物具有较强耦合关系;氮添加下,植物地上部分C、N化学计量学内稳性呈绝对稳态,有植物组土壤微生物生物量C、N及根C∶N对土壤养分变化较为敏感;且随氮浓度升高,土壤C∶N比值下降,外源氮浓度增加加剧土壤有机质分解,导致土壤碳排放增加。  相似文献   

9.
《植物生态学报》2018,42(10):1022
为探讨荒漠草地沙漠化对“土壤-微生物-胞外酶”系统生态化学计量的影响机理, 该研究采用空间序列代替时间演替的方法, 研究了宁夏盐池荒漠草地沙漠化过程中土壤、土壤微生物及土壤胞外酶碳(C)、氮(N)、磷(P)生态化学计量的变异特征。结果表明: (1)随着荒漠草地沙漠化的不断加剧, 土壤C、N、P含量和土壤C:P、N:P均呈降低趋势, 而土壤C:N逐渐增加。(2)荒漠草地沙漠化过程中, 土壤微生物生物量C (MBC):微生物生物量P (MBP)、微生物生物量N (MBN):MBP和土壤β-葡萄糖苷酶(BG):N-乙酰氨基葡萄糖苷酶(NAG)逐渐降低, 而土壤BG:磷酸酶(AP)和NAG:AP基本表现为增加趋势。(3)随着荒漠草地沙漠化程度的加剧, 土壤微生物C利用效率CUEC:NCUEC:P与土壤微生物N利用效率NUEN:C和土壤微生物P利用效率PUEP:C的变化趋势相反。(4)荒漠草地土壤、土壤微生物生物量和土壤胞外酶C:N化学计量(C:N, MBC:MBN, BG:NAG)与土壤、土壤微生物生物量和土壤胞外酶N:P化学计量(N:P, MBN:MBP, NAG:AP)显著负相关, 而土壤和胞外酶C:N化学计量(C:N, BG:NAG)与土壤和胞外酶C:P化学计量(C:P, BG:AP)显著正相关。土壤N:P与土壤MBN:MBP显著正相关, 而与土壤NAG:AP显著负相关。分析表明, 荒漠草地沙漠化过程中土壤微生物生物量及胞外酶活性随着土壤养分的变化而发生变化; 微生物-胞外酶C:N:P生态化学计量与土壤养分存在协变关系, 为理解荒漠草地土壤-微生物系统C、N、P循环机制提供理论依据。  相似文献   

10.
微生物残体是稳定土壤碳库的重要来源,对退化生境碳的固持和积累具有重要意义。植物根系分泌物作为植物-土壤-微生物"交流"的媒介,是调控土壤微生物残体迁移转化的关键。因此,以极度退化草地土壤为对象,以氨基糖为标志物,模拟研究了不同氮浓度(低氮-LN:0.1 gN/kg;高氮-HN:0.2 gN/kg)和多样性(3种化合物、9种化合物)根系分泌物输入对土壤微生物残体的影响。结果表明:(1)根系分泌物输入可显著增加高寒退化草地土壤微生物残体含量,且主要由真菌残体贡献。其中高氮和低多样性处理增加最明显,微生物残体和真菌残体分别增加了101.14%,125.16%,而低氮和高多样性处理微生物残体和真菌残体仅增加了35.79%,33.51%。(2)根系分泌物的输入可增加土壤β-葡萄糖苷酶、土壤磷酸酶和过氧化物酶活性,促进微生物的生长,而降低β-N-乙酰氨基葡萄糖苷酶活性,减少微生物残体的分解。(3)回归分析结果显示,土壤微生物残体与土壤环境的C/N呈显著负相关,与微生物生物量C/N呈显著正相关。上述结果表明,在未来退化草地恢复中,可充分利用模拟根系分泌物输入的土壤固碳策略,即通过提高土壤氮的有效性,促进微生物的生长,加快代谢周转,进一步提高微生物残体含量。  相似文献   

11.
围封对植被处于近自然恢复状态的退化草地有一定的修复作用,开展轻度退化草地围封过程中生物与非生物因素的协同互作研究是完整地认识草地生态系统结构和功能的基础.本试验对围栏封育10年的轻度退化草地的土壤化学计量特征进行了研究,同时采用高通量基因测序技术并结合Biolog-Eco方法,调查了土壤微生物多样性和功能的变化.结果表明:轻度退化草地实施围封后,土壤铵态氮含量显著升高,全钾含量显著降低,土壤有机碳、全氮、全磷、硝态氮、速效磷和速效钾则无明显变化.高寒草甸土壤微生物碳和氮在轻度退化和围栏封育草地间差异不显著;围栏封育后草地土壤微生物碳氮比显著高于轻度退化草地.随培养时间的延长,高寒草甸不同土层土壤微生物碳代谢强度均显著升高,土壤微生物碳代谢指数在轻度退化和围栏封育草地间差异不显著.高寒草甸土壤细菌OTUs显著高于真菌,轻度退化与围栏封育草地土壤微生物相似度为27.0%~32.7%.围封后,土壤真菌子囊菌门、接合菌门和球壶菌门相对丰富度显著升高,担子菌门显著降低,土壤细菌酸杆菌门显著低于轻度退化草地.土壤真菌和细菌群落组成在不同土层间差异较大,在轻度退化和围栏封育草地间仅有表层土壤真菌群落组成表现出较大差异.土壤细菌多样性受土壤全氮和速效钾影响较大,真菌多样性受地上生物量影响较大.土壤微生物对碳源利用能力主要受土壤速效钾影响.综上,长期围封禁牧对轻度退化草地土壤养分和土壤微生物无明显影响,且会造成牧草资源浪费,适度放牧可以保持草地资源的可持续利用.  相似文献   

12.
研究不同调控措施(春季休牧、春季休牧-划破草皮、春季休牧-划破草皮-施肥、春季休牧-划破草皮-播种、春季休牧-划破草皮-施肥-播种)对祁连山中度退化高寒草甸植被、土壤理化性质和土壤微生物生物量的影响。结果表明: 各调控措施均显著增加了退化高寒草甸植被盖度以及地上、地下生物量,春季休牧-划破草皮-施肥与春季休牧-划破草皮-施肥-播种两种措施下植被物种丰富度显著增加,春季休牧-划破草皮-播种与春季休牧-划破草皮-施肥-播种措施下物种优势种为补播草种青海草地早熟禾。中度退化高寒草甸土壤(对照)pH和容重显著高于各调控措施样地,春季休牧-划破草皮-施肥-播种措施下土壤含水量、土壤有机碳、全氮、全钾含量及碳氮比、氮磷比均最高,分别为21.3%、22.30 g·kg-1、2.77 g·kg-1、19.93 g·kg-1、8.3、3.5。春季休牧-划破草皮-施肥-播种措施下退化草地土壤微生物生物量氮、磷(分别为104.98和40.74 mg·kg-1)显著高于其他措施,而退化草地在春季休牧-划破草皮-施肥措施下土壤微生物生物量碳(240.72 mg·kg-1)显著高于其他措施。雷达图表明,调控措施对退化草地植被特征(地上、地下生物量)、土壤理化性质(含水量、有机碳、全氮、全磷、全钾)及土壤微生物生物量(碳、氮、磷)特征影响显著,且春季休牧-划破草皮-施肥-播种措施对研究区退化草地的修复效果最佳。  相似文献   

13.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

14.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   

15.
青藏高原有各类天然草地14×108hm2,其中高寒草甸和高寒灌丛约占青藏高原天然草地面积的50%,占全国草地总面积的16.2%。嵩草草甸是高寒草甸的主体,包括矮嵩草草甸、金露梅灌丛草甸、藏嵩草草甸、小嵩草草甸和高山嵩草草甸等,这5类高寒草甸平均地上生物量分别为354.2、422.4、445.1、227.3和368.5g/m2,地下生物量分别为3389.6、3548.3、11922.7、4439.3、5604.8g/m2,地下与地上生物量的比例分别为10.55、10.15、27.82、14.82和15.21,远大于IPCC(2006)报告中地下/地上生物量比例的默认值(2.8±95%)。地下生物量对气候变化和放牧的反应比地上生物量更敏感,干旱和重度放牧均降低了地下/地上生物量的比例。在极度退化状态下地下/地上生物量的比例2。对于轻度和中度退化的高寒草甸应以围封禁牧为主要恢复措施,但如果结合补播和施肥,则恢复速率会加快;对于重度和极度退化的高寒草甸,由于草地植物群落中优良牧草的比例极低,仅靠自然恢复很难进行恢复或需要的年限很长,所以必须采用人工重建的措施,并结合毒杂草防除和施肥等措施进行恢复,通过建立人工或半人工草地的措施予以重建。  相似文献   

16.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

17.
 测定分析了祁连山高寒草甸、山地森林和干草原土壤中微生物活性、生物量碳氮含量。结果显示:就土壤微生物生物量碳含量,森林比干草原和高寒草甸中分别高60%和120%以上,干草原比高寒草甸中高40%以上(p<0.05)。就土壤微生物生物量氮含量,0~5 cm土层,森林比高寒草甸和干草原中分别高64%和111%以上,高寒草甸比干草原中高29%;5~15 cm土层,森林比干草原和高寒草甸中分别高7%和191%以上,干草原比高寒草甸中高171% 以上(p<0.05)。森林和干草原中土壤微生物生物量碳比例比高寒草甸中高32%以上,0~5和5~15 cm土层,森林和干草原中土壤微生物生物量氮比例比高寒草甸中高150%以上(p<0.05)。就土壤微生物活性,0~5和5~15 cm土层,森林和高寒草甸比干草原中高26%以上;15~35 cm土层,森林比干草原和高寒草甸中高28%以上 (p<0.05)。土壤微生物生物量碳氮含量与有机碳含量及微生物生物量氮含量和比例与微生物生物量碳含量和比例呈现正相关(r2>0.30,p<0.000 1)。土壤微生物生物量氮含量、微生物生物量碳氮含量比例、微生物活性与土壤pH值呈显著负相关,土壤微生物生物量碳氮含量及其比例、微生物活性与土壤湿度呈正相关。说明祁连山3种生态系统土壤中微生物生物量和活性受气候要素、植被、有机碳、pH值和湿度等因素 的共同影响。  相似文献   

18.
土壤碳输入与输出之间的收支差决定土壤有机碳(SOC)含量。若尔盖湿地高寒草甸退化过程中, 土壤碳输入和输出哪个过程对SOC含量的影响占主导作用还不明确。该研究用空间序列代替时间序列的方法研究了若尔盖湿地高寒草甸不同退化阶段(高寒草甸(AM)、轻度退化高寒草甸(SD)和重度退化高寒草甸(HD)) SOC含量变化及原因。首先, 通过测定高寒草甸退化阶段上主要的土壤理化性状、微生物生物量、植物生物量和功能群组成的变化, 分析了退化阶段上土壤碳输入量的变化及原因; 其次, 结合室内土壤碳矿化培养实验结果和研究区的月平均气温以及土壤呼吸温度敏感性(Q10)估算了该区域土壤碳输出, 并分析了其变化原因; 最后, 分析了造成SOC含量变化的主要原因和过程。结果表明: 在退化梯度上, 土壤含水量(SWC)、SOC和全氮(TN)含量、微生物生物量碳氮含量降低; 植物群落组成逐渐从莎草科、禾本科占优势过渡到杂类草占优势, 且植物生物量降低; SOC矿化量降低; 有机碳潜在积累量降低(与AM阶段相比, SD和HD阶段有机碳潜在输入量、输出量和积累量分别降低了16%、18%、15%和59%、63%、41%)。SWC降低引起土壤容重、SOC含量、TN含量、全磷含量、C:N的改变, 进而导致植物功能群分布模式和土壤微生物的变化, 最终引起SOC输入和输出量的降低。SWC降低导致的植物碳潜在输入量的降低是若尔盖湿地高寒草甸退化过程中SOC含量下降的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号