首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since the IVA genome does not have the processing protease for the viral hemagglutinin (HA) envelope glycoprotein precursors, entry of this virus into cells and infectious organ tropism of IAV are primarily determined by host cellular trypsin-type HA processing proteases. Several secretion-type HA processing proteases for seasonal IAV in the airway, and ubiquitously expressed furin and pro-protein convertases for highly pathogenic avian influenza (HPAI) virus, have been reported. Recently, other HA-processing proteases for seasonal IAV and HPAI have been identified in the membrane fraction. These proteases proteolytically activate viral multiplication at the time of viral entry and budding. In addition to the role of host cellular proteases in IAV pathogenicity, IAV infection results in marked upregulation of cellular trypsins and matrix metalloproteinase-9 in various organs and cells, particularly endothelial cells, through induced pro-inflammatory cytokines. These host cellular factors interact with each other as the influenza virus-cytokine-protease cycle, which is the major mechanism that induces vascular hyperpermeability and multiorgan failure in severe influenza. This mini-review discusses the roles of cellular proteases in the pathogenesis of IAV and highlights the molecular mechanisms of upregulation of trypsins as effective targets for the control of IAV infection. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

2.
Highly pathogenic H5N1 influenza virus causes coagulopathy in chickens   总被引:3,自引:0,他引:3  
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens.  相似文献   

3.
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.  相似文献   

4.
5.
Song H  Nieto GR  Perez DR 《Journal of virology》2007,81(17):9238-9248
In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.  相似文献   

6.
We investigated the neuroprotective effects of Apocynum venetum leaf extract (AVLE) on a rat model of cerebral ischemia-reperfusion injury and explored the underlying mechanisms. Rats were randomly divided into five groups: sham, ischemia-reperfusion, AVLE125, AVLE250, and AVLE500. Cerebral ischemia was induced by 1.5 h of occlusion of the middle cerebral artery. Cerebral infarct area was measured by tetrazolium staining at 24 and 72 h after reperfusion, and neurological function was evaluated at 24, 48 and 72 h after reperfusion. Pathological changes on the ultrastructure of the blood-brain barrier (BBB) were observed by transmission electron microscopy. BBB permeability was assessed by detecting leakage of Evan's blue (EB) dye in brain tissue. The expression and activities of matrix metalloproteinase (MMP)-9/-2 were measured by western blot analyses and gelatin zymography at 24 h after reperfusion. AVLE (500 mg/kg/day) significantly reduced cerebral infarct area, improved recovery of neurological function, relieved morphological damage to the BBB, reduced water content and EB leakage in the brain, and downregulated the expression and activities of MMP-9/-2. These findings suggest that AVLE protects against cerebral ischemia-reperfusion-induced injury by alleviating BBB disruption. This action may be due to its inhibitory effects on the expression and activities of MMP-9/-2.  相似文献   

7.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

8.
Low pathogenicity avian influenza (LPAI) viruses of the H7 subtype generally cause mild disease in poultry. However the evolution of a LPAI virus into highly pathogenic avian influenza (HPAI) virus results in the generation of a virus that can cause severe disease and death. The classification of these two pathotypes is based, in part, on disease signs and death in chickens, as assessed in an intravenous pathogenicity test, but the effect of LPAI viruses in turkeys is less well understood. During an investigation of LPAI virus infection of turkeys, groups of three-week-old birds inoculated with A/chicken/Italy/1279/99 (H7N1) showed severe disease signs and died or were euthanised within seven days of infection. Virus was detected in many internal tissues and organs from culled birds. To examine the possible evolution of the infecting virus to a highly pathogenic form in these turkeys, sequence analysis of the haemagglutinin (HA) gene cleavage site was carried out by analysing multiple cDNA amplicons made from swabs and tissue sample extracts employing Sanger and Next Generation Sequencing. In addition, a RT-PCR assay to detect HPAI virus was developed. There was no evidence of the presence of HPAI virus in either the virus used as inoculum or from swabs taken from infected birds. However, a small proportion (<0.5%) of virus carried in individual tracheal or liver samples did contain a molecular signature typical of a HPAI virus at the HA cleavage site. All the signature sequences were identical and were similar to HPAI viruses collected during the Italian epizootic in 1999/2000. We assume that the detection of HPAI virus in tissue samples following infection with A/chicken/Italy/1279/99 reflected amplification of a virus present at very low levels within the mixed inoculum but, strikingly, we observed no new HPAI virus signatures in the amplified DNA analysed by deep-sequencing.  相似文献   

9.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   

10.
Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease of birds that produces high mortality and morbidity. HPAI was diagnosed in the three dead magpies (Pica pica sericea) submitted to the National Veterinary Research and Quarantine Service. At necropsy, the prominent lesions were multifocal or coalescing necrosis of the pancreas with enlargement of the livers and spleens. Microscopically, there were severely necrotizing pancreatitis and lymphocytic meningoencephalitis. Influenza viral antigen was also detected in areas closely associated with histologic lesions. Avian influenza virus was isolated from cecal tonsils and feces of the magpies. The isolated virus was identified as a highly pathogenic H5N1, with hemagglutinin proteolytic cleavage site deduced amino acid sequence of QREKRKKR/GLFGAIAG. To determine the pathogenicity of the isolate, eight 6-wk-old specific-pathogen-free chickens were inoculated intravenously with the virus, and all birds died within 24 hr after inoculation. This is the first report of HPAI in magpies.  相似文献   

11.
卵黄抗体是鸡产生的主要抗体,鸡被免疫后,IgY被持续地被合成、分泌到血液中,并被选择性地转移、富集到蛋黄中。母鸡产生的IgY可为它们的后代抵抗常见的禽类病原体提供有效的体液免疫保护。就有关寄生虫卵黄抗体的研制情况及其在兽医寄生虫病诊断、治疗等的应用情况做一综述。  相似文献   

12.
以鹅源H5亚型禽流感病毒(AIV)基因组为模板,用RTPCR扩增血凝素(Hemagglutinin, HA)基因,克隆入鸡痘病毒表达载体pFG1175,转染鸡痘病毒感染的鸡胚成纤维细胞,通过蓝斑筛选和间接免疫荧光检测,获得表达HA基因的重组鸡痘病毒(Recombinant fowlpox virus, rFPVHA)。rFPVHA经鸡胚成纤维细胞连续传15代后,报告基因LacZ和HA基因可稳定表达。用103PFU和105PFU的rFPVHA免疫无特定病原体的(Specific pathogen free, SPF)鸡,免疫后22d 血凝抑制(Hemagglutinin inhibition,HI)抗体监测阳性率分别为0%和20%,但均抵御了H5亚型毒株的致死性攻击,保护率为100%。结果表明,构建了表达HA基因的重组鸡痘病毒,该重组病毒具有良好遗传稳定性,免疫鸡可提供完全保护,显示出了一定的应用前景。  相似文献   

13.
Blood-brain barrier (BBB) leakage plays a role in the pathogenesis of many pathological states of the brain including ischemia and some neurodegenerative disorders. In recent years, erythropoietin (EPO) has been shown to exert neuroprotection in many pathological conditions including ischemia in the brain. This study aimed to investigate the effects of EPO on BBB integrity, infarct size and lipid peroxidation following global brain ischemia/reperfusion in rats. Wistar male rats were divided into four groups (each group n=8); Group I; control group (sham-operated), Group II; ischemia/reperfusion group, Group III; EPO treated group (24 h before decapitation--000 U/kg r-Hu EPO i.p.), Group IV; EPO+ ischemia/reperfusion group (24 h before ischemia/reperfusion--3000 U/kg r-Hu EPO i.p.). Global brain ischemia was produced by the combination of bilateral common carotid arteries occlusion and hemorrhagic hypotension. Macroscopical and spectrophotometrical measurement of Evans Blue (EB) leakage was observed for BBB integrity. Infarct size was calculated based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Lipid peroxidation in the brain tissue was determined as the concentration of thiobarbituric acid-reactive substances (TBARS) for each group. Ischemic insult caused bilateral and regional BBB breakdown (hippocampus, cortex, corpus striatum, midbrain, brain stem and thalamus). EPO pretreatment reduced BBB disruption, infarct size and lipid peroxide levels in brain tissue with 20 min ischemia and 20 min reperfusion. These results suggest that EPO plays an important role in protecting against brain ischemia/reperfusion through inhibiting lipid peroxidation and decreasing BBB disruption.  相似文献   

14.
Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti-H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI.  相似文献   

15.
The term blood-brain barrier (BBB) relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5) appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500). Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone. Understanding the mechanisms causing functional endothelial alterations and endothelial damage is likely to provide novel protective targets in stroke.  相似文献   

16.
17.
Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.  相似文献   

18.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

19.
Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression of ischaemic brain damage. In the present study, we investigated the effects of selective inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E(2) (PGE(2)) levels, myeloperoxidase (MPO) activity, Evans blue (EB) extravasation and infarct volume in a standardized model of transient focal cerebral ischaemia in the rat. Post-ischaemic treatment with nimesulide markedly reduced the increase in PGE(2) levels in the ischaemic cerebral cortex 24 h after stroke and diminished infarct size by 48% with respect to vehicle-treated animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage and MPO activity, respectively) seen at 48 h after the initial ischaemic episode. These studies provide the first experimental evidence that COX-2 inhibition with nimesulide is able to limit BBB disruption and leukocyte infiltration following transient focal cerebral ischaemia. Neuroprotection afforded by nimesulide is observed even when the treatment is delayed until 6 h after the onset of ischaemia, confirming a wide therapeutic window of COX-2 inhibitors in experimental stroke. On the contrary, selective inhibition of COX-1 with VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 activity, but not COX-1 activity, contributes to the progression of focal ischaemic brain injury, and that the beneficial effects observed with non-selective COX inhibitors are probably associated to COX-2 rather than to COX-1 inhibition.  相似文献   

20.
The blood–brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号