首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
噬菌体是能特异性感染细菌的病毒,自发现以来一直被用作抗菌药物。但随着抗生素的广泛使用,噬菌体疗法逐渐被淡忘。目前,抗生素耐药性(尤其是多药耐药)的出现,严重威胁着患者的生命和健康,抗生素耐药已成为一个全球性的公共卫生问题,因此寻找新的治疗方法非常必要。在西方国家长期被忽视的噬菌体疗法,如今正重现生机。本文通过查阅国内外大量病例,对噬菌体与抗生素联合治疗的一些实例进行了讨论,阐述了这种双重治疗的可行性,指出其面临的挑战,并且还阐述了噬菌体和抗生素之间可能存在的作用机制。  相似文献   

2.
抗生素耐药性的研究进展与控制策略   总被引:2,自引:1,他引:1  
抗生素是治疗细菌感染的有效药物,然而抗生素在人类医学及农业生产中的大规模使用催生了细菌耐药性在环境中的快速扩散和传播,特别是多种抗生素的联合使用更是促进了多重耐药性的产生,严重威胁着人类和动物健康及食品与环境安全,相关问题已经引起人们的警觉。因此新研究主要集中在以下几方面:利用组学及合成生物学等方法挖掘并合成新型抗生素;利用高通量技术等系统分析环境中耐药菌及耐药基因新的传播途径及产生的新耐药机制;减抗、替抗及控制耐药基因的策略及其相关工艺。因此,在全面认识耐药基因在环境中传播规律的基础上,如何绿色高效地切断传播途径仍是目前研究的热点。基于此,本文在细菌水平上阐述了抗生素的研发历程、耐药性的发展及控制策略,从而为有效遏制细菌耐药性的发展提供思路。  相似文献   

3.
细菌耐药性应对策略研究进展   总被引:4,自引:2,他引:2  
细菌耐药性(Antimicrobial resistance,AMR)持续增长,但新上市抗生素数量却持续下降。抗生素耐药基因(Antimicrobial resistance gene,ARG)和抗生素耐药菌感染已严重威胁人类健康。因此,需要多方面联合采取措施来应对AMR所带来的各种挑战,包括创新生物医药、改善抗生素使用和抗生素耐药监测系统、减少抗生素耐药基因产生速度、阻止健康护理相关感染和多重抗生素耐药菌传播与扩散、开发微生物学快速诊断方法与设备、减少临床和兽医抗生素滥用等。庆幸的是,AMR已受到各国政要、科学家和企业家等的高度重视与支持,相信随着新技术、新产品的不断问世和管理新措施的不断出台,AMR问题一定会得到控制和缓解。  相似文献   

4.
抗菌药物交替使用方案对细菌耐药性的影响   总被引:1,自引:0,他引:1  
目前,由细菌多重耐药导致的医院感染问题日益突出,临床上很多病例因感染耐药菌而得不到适当的抗感染治疗,导致治疗失败。研发一种新的抗菌药物一般需要10年左右的时间,而产生一代耐药菌只需要2年的时间,如果依靠研发新的抗生素远远不能解决细菌耐药性问题。因此,对现有抗生素的合理使用是控制细菌耐药及其引起医院感染问题的根本措施。最近,一种新的抗生素交替使用方案,由于其显著的临床效果引起了各方面的广泛关注。  相似文献   

5.
耐药微生物和抗生素耐药基因与全健康   总被引:1,自引:0,他引:1  
钱璟  吴哲元  郭晓奎  刘畅 《微生物学通报》2022,49(10):4412-4424
因人类的各种活动,耐药微生物和抗生素耐药基因在“人-动物-环境”界面发生跨物种和跨生境的传播。将人类、动物和环境视作有机整体的“全健康”(One Health)理念有望成为解决这种传播的有效策略。抗生素及其代谢活性产物在环境中富集,再经动物及动物制品传播到人,产生耐药微生物并造成耐药基因的传播。本文综述了人-动物-环境界面耐药菌和抗生素耐药基因传播的流动与循环,总结了我国和其他国家应对抗生素耐药性问题的政策,倡导更多的国家和地区将“全健康”理念和方法用于控制抗生素耐药性传播;通过医疗卫生部门、食品药品监督管理部门、农林渔牧部门与教育、财政等多部门合作来应对抗生素耐药性的全球挑战。  相似文献   

6.
细菌的消毒剂耐药性   总被引:2,自引:0,他引:2  
细菌的消毒剂耐药性指细菌与消毒剂多次接触后,使该类消毒剂的最小抑菌浓度或最小杀菌浓度升高的现象。细菌的消毒剂耐药性普遍存在,多种细菌可对一种消毒剂耐药,一种细菌可对多种消毒剂耐药。消毒剂选择件压力是耐药性产生的外在原因,产生的机制包括生化结构、遗传学途径和酶学途径。消毒剂耐药与抗生素耐药之间存在一定的关系。应加强研究,制定统一标准,加强监测,并制定合理应用消毒荆规范,以减少消毒剂耐药性的发生。  相似文献   

7.
目的:分析我院一年来主要病原菌分布及耐药性结果,为临床经验性治疗提供依据。方法:选取2013年9月—2014年9月我院住院患者送检的标本6983份,标本采集主要有痰液、尿液、咽拭子、分泌物、血液、粪便等,采用全自动分析仪鉴定菌种,药敏采用纸片扩散法或自动化仪器法。结果:6983份标本中以痰液标本为主,占52.6%;送检标本中共分离病原菌1065株,其中排在前五位的病原菌为大肠埃希菌、肺炎克雷伯菌、铜绿假单胞菌、金黄色葡萄球菌、阴沟肠杆菌。革兰氏阴性杆菌主要以肠杆科细菌为主,对碳青霉烯类抗生素耐药率很低,其他抗菌药物呈现不同程度的耐药,但肺炎克雷伯菌对大多数抗生素都敏感;铜绿假单胞菌耐药率也较低,金黄色葡萄球菌对万古霉素、替考拉宁、利奈唑胺的耐药率均为0,而对其他抗菌药物呈现不同程度的耐药。结论:我院感染病原菌以肠杆科细菌为主,其次为铜绿假单胞菌、金黄色葡萄球菌、除肺炎克雷伯菌对大多数抗生素都敏感,其他病原菌对多数抗菌药物呈现不同程度的耐药,因此了解不同细菌对不同抗菌药物的耐药性合理应用抗生素,以减少耐药菌的产生。  相似文献   

8.
细菌耐药性一直是一项全球性的卫生挑战,加剧人们控制和治疗危及生命的细菌感染难度。尽管人们正在努力开发新的抗生素或其替代品,但在过去的二十多年,几乎没有新的抗生素或其替代品被临床批准使用。抗生素佐剂与抗生素的组合可以抑制细菌耐药性或增强抗生素抑菌性,为对抗多重耐药细菌提供了一种可持续和有效的策略。本文综述了抗生素佐剂的分类和作用机制。最后讨论了抗生素佐剂和抗生素联合使用策略的发展趋势和面临的挑战。  相似文献   

9.
目的 了解重症监护病房(ICU)与非重症监护病房粘质沙雷菌耐药情况,指导抗生素的合理应用.方法 收集2009年至2010年永康市第一人民医院ICU病房送检标本中分离到的33株粘质沙雷菌与同期非ICU病房送检标本中分离到的26株粘质沙雷菌,对其耐药性进行回顾性分析.结果 ICU与非ICU分离的粘质沙雷菌,除均对头孢他啶、庆大霉素、亚胺培南、左氧氟沙星、哌拉西林/他唑巴坦、复方新诺明耐药外,ICU粘质沙雷菌对氨苄西林/舒巴坦、氨曲南、头孢曲松、头孢唑啉耐药率明显高于非ICU病房(P<0.05),差异有统计学意义.结论 ICU粘质沙雷菌耐药率明显高于非ICU.应及时对ICU患者进行抗生素耐药性检查,根据药敏试验结果选用抗生素,细菌耐药率少于30%的抗菌药物,首先选用,但要考虑感染程度及器官功能状态;耐药率大于75%的药物暂停使用.  相似文献   

10.
目的了解长春地区部分医院临床分离的致病菌对抗菌药物的耐药情况。方法收集吉林大学中日联谊医院和长春中医药大学附属医院临床分离的致病菌,采用K—B法进行抗生素敏感性试验,参照CLSI2009年版的标准判断结果。结果从这两家医院共分离细菌447株,其中革兰阴性菌353株,占78.9%,革兰阳性菌94株,占21.1%。肠杆菌科细菌对氨苄西林的耐药率在70%以上,对庆大霉素的耐药率超过了50%,但对亚胺培南保持较高的敏感性(耐药率〈5%)。金黄色葡萄球菌和表皮葡萄球菌对红霉素耐药率分别为65.2%和82.1%,对万古霉素的耐药率较低,分别为4.5%和3.6%。非发酵革兰阴性杆菌对头孢他啶的耐药率超过50%,铜绿假单胞菌对氨曲南的耐药率达到了62.9%,对他唑巴坦复合制剂、亚胺培南、美罗培南和阿米卡星较为敏感,而鲍曼不动杆菌对各类抗生素的耐药率都较高。结论细菌对抗生素的耐药性仍表现出增长趋势,加强细菌耐药性的检测,对于指导临床正确、合理使用抗生素,减少耐药菌的产生和传播具有重要意义。  相似文献   

11.
Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended.  相似文献   

12.
Antibiotic resistance is a global threat to public health. The use of antibiotics at sub-inhibitory concentrations has been recognized as an important factor in disseminating antibiotic resistance via horizontal gene transfer. Although non-antibiotic, human-targeted pharmaceuticals are widely used by society (95% of the pharmaceuticals market), the potential contribution to the spread of antibiotic resistance is not clear. Here, we report that commonly consumed, non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propranolol), at clinically and environmentally relevant concentrations, significantly accelerated the dissemination of antibiotic resistance via plasmid-borne bacterial conjugation. Various indicators were used to study the bacterial response to these drugs, including monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. Enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. Additionally, these non-antibiotic pharmaceuticals induced responses similar to those detected when bacteria are exposed to antibiotics, such as inducing the SOS response and enhancing efflux pumps. The findings advance understanding of the transfer of antibiotic resistance genes, emphasizing the concern that non-antibiotic, human-targeted pharmaceuticals enhance the spread of antibiotic resistance among bacterial populations.Subject terms: Antibiotics, Public health  相似文献   

13.
Microbial resistance is emerging faster than we are replacing our armamentarium of antimicrobial agents. Resistance to penicillin developed soon after it was introduced into clinical practice in 1940s. Now resistance developed to every major class of antibiotics. In healthcare facilities around the world, bacterial pathogens that express multiple resistance mechanisms are becoming common. The origins of antibiotic resistance genes can be traced to the environmental microbiota. Mechanisms of antibiotic resistance include alterations in bacterial cell wall structure, growth in biofilms, efflux pump expression, modification of an antibiotic target or acquisition of a new target and enzymatic modification of the antibiotic itself. Specific examples of each mechanism are discussed in this review. Some approaches to counter resistance include antibiotic stewardship, co-administration with resistance inhibitors, exploiting genome data in search of new targets and use of non-antibiotic antimicrobials for topical indications. A coordinated effort from government, public and industry is needed to deal with antibiotic resistance health care crisis.  相似文献   

14.
Emergence of antibiotic resistance presents a major setback to global health, and shortage of antibiotic pipelines has created an urgent need for development of alternative therapeutic strategies. Bacteriophage (phage) therapy is considered as a potential approach for treatment of the increasing number of antibiotic-resistant pathogens. Phage-antibiotic synergy (PAS) refers to sublethal concentrations of certain antibiotics that enhance release of progeny phages from bacterial cells. A combination of phages and antibiotics is a promising strategy to reduce the dose of antibiotics and the development of antibiotic resistance during treatment. In this review, we highlight the state-of-the-art advancements of PAS studies, including the analysis of bacterial-killing enhancement, bacterial resistance reduction, and anti-biofilm effect, at both in vitro and in vivo levels. A comprehensive review of the genetic and molecular mechanisms of phage antibiotic synergy is provided, and synthetic biology approaches used to engineer phages, and design novel therapies and diagnostic tools are discussed. In addition, the role of engineered phages in reducing pathogenicity of bacteria is explored.  相似文献   

15.
Bacteriophages, highly prevalent in all environments, have found their use in medicine as an alternative or complement to antibiotics. The therapeutic use of bacteriophages was particularly popular in the 1920s and 1930s, until the discovery and introduction of antibiotics. Due to the dynamic growth of antibiotic resistance among bacterial strains, numerous international institutions (such as the FDA) have declared the search for novel treatment modalities to be of the highest priority. To date, bacteriophage therapy has not been registered for general use in Western countries. The regulation of biological medicinal products (within medicinal product regulation) does not contain a specific documentation frame for bacteriophages (only for vaccines, blood derived products, etc.) which, as active substances, need to meet specific requirements. Recently, the FDA allowed bacteriophage therapy to be used in the United States, via the Emergency Investigational New Drug scheme; clinical trials to compare the safety and efficacy of bacteriophage therapy are also permitted. To date, several therapeutic products of this type have made it to phase I or II; some clinical programmes have also been completed. This article cites numerous animal model studies and registered clinical trials, showing the safety and effectiveness of bacteriophage therapy, including infections caused by bacterial strains resistant to antibiotic treatment.  相似文献   

16.
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.  相似文献   

17.
Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are believed to increase treatment efficacy and reduce resistance evolution (WHO treatment guidelines for drug-resistant tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33 antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current theories, the phenotypic features of drug pairs are weak predictors of resistance evolution. Instead, the resistance evolution is driven by the relationship between the evolutionary trajectories that lead to resistance to a drug combination and those that lead to resistance to the component drugs. Drug combinations requiring a novel genetic response from target bacteria compared with the individual component drugs significantly reduce resistance evolution. These data support combination therapy as a treatment option to decelerate resistance evolution and provide a novel framework for selecting optimized drug combinations based on bacterial evolutionary responses.  相似文献   

18.
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.  相似文献   

19.
Unconstrained consumption of antibiotics throughout the expanse of the 21st century has resulted in increased antimicrobial resistance (AMR) among bacterial pathogens, a transpiring predicament affecting the public healthcare sector. The upsurge of multidrug-resistant pathogens, including Staphylococcus aureus, synchronously with the breakdown of the conventional antibiotic pipeline has led to the exploration of alternate strategies. Phage therapy applications have thus gained immense prominence among the scientific community to conquer this notorious pathogen associated with wide-ranging clinical manifestations, especially in immunosuppressed individuals. In this direction, a plethora of phage formulations like topical solutions, medicated dressings impregnated with phages, liposomal entrapments, etc., have been considered as an effective and upcoming strategy. Owing to the synergistic effect of phages with other antibacterial agents, they can be easily exploited for biomedical application. This review primarily focuses on the therapeutic implications of S. aureus phages in the biotechnological and medical arena. Through this review article, we have also discussed the current status and the incurring challenges in phage therapy.  相似文献   

20.
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号