首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation and proteolysis of squid neurofilament proteins by endogenous kinase and calcium-activated protease activities, respectively, were studied. When axoplasm was incubated in the presence of [gamma-32P]ATP, most of the phosphate was incorporated into two neurofilament proteins: a 220-kilodalton (NF-220) and a high-molecular-weight (HMW) protein. When this phosphorylated axoplasm was subjected to endogenous calcium-activated proteolysis, two significant phosphorylated fragments were generated, i.e., a soluble 110K fragment and a pelletable 100K fragment. Immunochemical and other analyses suggest that the pelletable 100K fragment contains the common helical neurofilament rod region and that the soluble 110K protein is the putative side arm of the NF-220. In contrast, neither the HMW or the NF-220 was detected in the region of the stellate ganglion which contains the cell bodies of the giant axon. However, this region did contain a number of proteins that were sensitive to calcium-activated proteolysis and reacted with a monoclonal intermediate filament antibody. This intermediate filament antibody reacts with most of the axoplasmic proteins that copurify with neurofilaments, i.e., in the order of their intermediate filament antibody staining intensity, a 60K, 65K, 220K, and 74K protein. In the cell body preparation, the intermediate filament antibody labeled, in order of their staining intensity, a 65K, 60K, 74K, and 180K protein. In both the axoplasmic and cell body preparations, endogenous calcium-activated proteolysis generated characteristic fragments that could be labeled with the anti-intermediate filament antibody.  相似文献   

2.
3.
Abstract: Recently, we reported the construction of a cDNA library encoding a heterogeneous population of polyadenylated mRNAs present in the squid giant axon. The nucleic acid sequencing of several randomly selected clones led to the identification of cDNAs encoding β-actin and β-tubulin, two relatively abundant axonal mRNA species. To continue characterization of this unique mRNA population, the axonal cDNA library was screened with a cDNA probe encoding the carboxy terminus of the squid kinesin heavy chain. The sequencing of several positive clones unambiguously identified axonal kinesin cDNA clones. The axonal localization of kinesin mRNA was subsequently verified by in situ hybridization histochemistry. In addition, the presence of kinesin RNA sequences in the axoplasmic polyribosome fraction was demonstrated using PCR methodology. In contrast to these findings, mRNA encoding the squid sodium channel was not detected in axoplasmic RNA, although these sequences were relatively abundant in the giant fiber lobe. Taken together, these findings demonstrate that kinesin mRNA is a component of a select group of mRNAs present in the squid giant axon, and suggest that kinesin may be synthesized locally in this model invertebrate motor neuron.  相似文献   

4.
Mg2+- or Ca2+-Activated ATPase in Squid Giant Fiber Axoplasm   总被引:1,自引:0,他引:1  
A divalent cation-activated ATPase in axoplasm from the squid giant axon is described. The enzyme requires Mg2+ or Ca2+, has a K+ optimum of 60 mM, and has a pH optimum of 7.5. Several nucleotide triphosphates other than ATP can serve as substrates. The enzyme is inhibited by excess ATP or Mg2+. The enzyme is enriched in a rapidly sedimenting fraction of the axoplasm, and is eluted in the exclusion volume of a Sepharose 4B column, suggesting that it is associated with a highly aggregated structure. Comparison of the properties of enzyme with those of myosin and Na+-K+-ATPase suggests that differs from both of these enzymes. The enzyme has many similarities to vertebrate nerve ATPases previously described. The demonstration of the presence of this ATPase in squid axoplasm proves the neuronal localization of the enzyme.  相似文献   

5.
Abstract: Neuronal perikarya were isolated from young rat brain by sucrose density gradient centrifugation of the tissue, dissociated with a low concentration of trypsin. The isolated cells retained their endogenous proteins, and were capable of active protein synthesis. After incubation with L-[35S]methionine, perikarya were homogenised and separated into soluble and particulate fractions by centrifugation at 70,000 g. Newly synthesised polypeptides in each fraction were resolved by SDS-gel and two-dimensional gel electrophoresis coupled with fluorography. Neuronal perikarya synthesised predominantly actin, and α1-, α2 and β-tubulin. In addition, polypeptides with molecular weights of 35,000, 68,000 and 85,000 were heavily labelled. On two-dimensional electrophoresis, microheterogeneities were seen in soluble actin as well as in soluble tubulins, indicating that heterogeneities reported for brain actin and tubulins are inherent in neuronal actin and tubulins, but not owing to the heterogeneity of cells in the brain tissue. Structural differences between soluble tubulins and those associated with the particulate fraction were indicated by two-dimensional gel electrophoresis and also by one-dimensional peptide maps. The 68,000 molecular weight polypeptide synthesised in neuronal perikarya in vitro yielded a peptide map virtually identical with that generated from the major component of the neurofilament triplet polypeptides that were synthesised in situ. The 160,000 and 200,000 components of the neurofilament triplet were also synthesised in perikarya in vitro , but to disproportionately weaker extents compared with the 68,000 component.  相似文献   

6.
Cation Interdiffusion in Squid Giant Axons   总被引:1,自引:0,他引:1  
Radiotracer techniques were used to study the influxes and effluxes of various univalent cations in internally perfused squid giant axons. Membrane currents and conductances were determined by the voltage-clamp technique under analogous internal and external conditions. Both sodium-containing and sodium-free internal and external media were studied. Membrane impedance was measured with an ac impedance bridge to determine the general magnitude and time course of the impedance loss which accompanied the excitation process in both varieties of external media. Maximum transmembrane currents were found to be of comparable magnitude to the charge transfer associated with the peak interdiffusion flux measured under the same conditions. The product of the membrane resistance and the interdiffusion flux remained constant over a wide range of resistance and flux values, both at rest and during activity, both in sodium-containing and sodium-free media. The implications of these findings for excitation theory are discussed.  相似文献   

7.
Abstract: Using video-enhanced microscopy and a pulse-radiolabeling paradigm, we show that proteins synthesized in the medial giant axon cell body of the crayfish ( Procambarus clarkii ) are delivered to the axon via fast (∼62 mm/day) and slow (∼0.8 mm/day) transport components. These data confirm that the medial giant axon cell body provides protein to the axon in a manner similar to that reported for mammalian axons. Unlike mammalian axons, the distal (anucleate) portion of a medial giant axon remains intact and functional for >7 months after severance. This axonal viability persists long after fast transport has ceased and after the slow wave front of radiolabeled protein has reached the terminals. These data are consistent with the hypothesis that another source (i.e., local glial cells) provides a significant amount of protein to supplement that delivered to the medial giant axon by its cell body.  相似文献   

8.
The subcellular localization of microtubule proteins in the neurons of squid (Doryteuthis bleekeri) was immunologically studied using monoclonal antibodies against the microtubule proteins. We found that (1) the squid neurons contained three kinds of high-molecular-weight microtubule-associated proteins [MAP A of approximately 300 kilodaltons (kD), MAP B of 260 kD, and axolinin of 260 kD] and two kinds of beta-tubulin isotypes (beta 1 and beta 2); (2) the cell body of the squid giant neuron contained MAP A, MAP B, and the two beta-tubulin isotypes (beta 1 and beta 2); (3) axolinin and the beta 1 isotype were present exclusively in the peripheral axoplasm of the giant axon; and (4) a small amount of axolinin, MAP A, and the beta 1 isotype was found in the insoluble aspect of the central axoplasm, whereas the soluble aspect of the central axoplasm contained an abundant amount of MAP A along with the modified form of the beta 1 isotype. The regional difference of the distribution of the microtubule protein components may explain the differences in stability among axonal microtubules. Microtubules in the soluble aspect of the central axoplasm are sensitive to any treatment with colchicine, cold temperature, and high ionic strength but those both in the insoluble aspect of the central axoplasm and in the peripheral axoplasm are highly insensitive to the treatment.  相似文献   

9.
Changes in solubility and transport rate of cytoskeletal proteins during regeneration were studied in the motor fibers of the rat sciatic nerve. Nerves were injured by freezing at the midthigh level either 1-2 weeks before (experiment I) or 1 week after radioactive labeling of the spinal cord with L-[35S]methionine (experiment II). Labeled proteins in 6-mm consecutive segments of the nerve 2 weeks after labeling were analyzed following fractionation into soluble and insoluble populations with 1% Triton at 4 degrees C. When axonal transport of newly synthesized cytoskeleton was examined in the regenerating nerve in experiment I, a new faster component enriched in soluble tubulin and actin was observed that was not present in the control nerve. The rate of the slower main component containing most of the insoluble tubulin and actin together with neurofilament proteins was not affected. A smaller but significant peak of radioactivity enriched in soluble tubulin and actin was also detected ahead of the main peak when the response of the preexisting cytoskeleton was examined in experiment II. It is thus concluded that during regeneration changes in the organization take place in both the newly synthesized and the preexisting axonal cytoskeleton, resulting in a selective acceleration in rate of transport of soluble tubulin and actin.  相似文献   

10.
Calcium Efflux from Internally Dialyzed Squid Giant Axons   总被引:12,自引:10,他引:2       下载免费PDF全文
Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources.  相似文献   

11.
Translational activity of mRNA coding for cytoskeletal brain proteins was used to determine the relative abundance of the mRNA in the brains of newborn and adult mice. mRNA was translated in a cell-free system containing rabbit reticulocyte factors. The products of translation were analyzed by two-dimensional gel electrophoresis and characterized by peptide map analysis. Comparison of the products of translation from newborn and from adult brain mRNA shows a 50% decrease in actin and tubulin from newborn to the adult stage. In contrast, the 70 kd neurofilament protein and glial fibrillary acidic protein show a twofold increase in the adult stage. The heat-shock protein HSP70 increases slightly (30%) whereas the brain isozyme of creatine kinase and the heat-shock protein HSP90 are three times as high in adult subjects as in newborns.  相似文献   

12.
Surface Charge of Giant Axons of Squid and Lobster   总被引:2,自引:1,他引:1       下载免费PDF全文
A method is described for the determination of the electrophoretic mobility of single, isolated, intact, giant axons of squid and lobster. In normal physiological solutions, the surface of hydrodynamic shear of these axons is negatively charged. The lower limit of the estimated surface charge density is -1.9 × 10-8 coul cm-2 for squid axons, -4.2 × 10-8 coul cm-2 for lobster axons. The electrophoretic mobility of squid axons decreases greatly when the applied transaxial electric field is made sufficiently intense; action potential propagation is blocked irreversibly by transaxial electric fields of the same intensity. The squid axon recovers its mobility hours later and is then less affected by transaxial fields. Eventually, a state is reached in which the transaxial field irreversibly reverses the sign of the surface charge. In contrast, there is no obvious effect of electric field on the mobility of lobster axons. The mobility of lobster axons becomes undetectable in the presence of Th4+ at a concentration which blocks the action potential, and in the presence of La3+ at a concentration which does not affect propagation. Quinine does not alter lobster axon mobility at a concentration which blocks action potential conduction. Replacement of extracellular Na+ by K+ is without effect upon lobster axon mobility. The electrophysiological implications of the results are discussed.  相似文献   

13.
Removal of Potassium Negative Resistance in Perfused Squid Giant Axons   总被引:6,自引:3,他引:3  
Squid giant axons, internally and externally perfused with solutions having potassium as the only cation, exhibit an approximately linear steady-state current-voltage relation. When small amounts of calcium and magnesium are present in the external potassium solution, the current-voltage curve is markedly nonlinear, exhibiting the rectification and negative resistance which have been observed for intact axons in isosmotic potassium solutions. The effects of perfusion and removal of external divalent cations are interpreted in terms of two components of current, a linear component and a nonlinear time-varying component. The former is increased and the latter diminished by the removal of the external divalent cations.  相似文献   

14.
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.  相似文献   

15.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate.  相似文献   

16.
17.
The aromatic hydrocarbon 1,2-diacetylbenzene (1,2-DAB) is a protein-reactive γ-diketone metabolite of the neurotoxic solvent 1,2-diethylbenzene (1,2-DEB). The effect of neurotoxic 1,2-DAB and its non-neurotoxic isomer 1,3-DAB has been studied on motor proteins and cytoskeletal proteins of rat spinal cord (SC). For in vitro studies, SC slices were incubated with 1, 2, 5, 10 mM of DAB isomers for 30 min at 37°C. For in vivo studies, rats received (i.p.) 20 mg/kg/day of 1,2-DAB or 1,3-DAB, or vehicle (2% acetone in saline), 5 days a week for 2 weeks. Spinal cord and sciatic nerve proteins were subjected to Western blotting using monoclonal mouse antibodies to NF-M, kinesin, dynein, and tau. Proteins were quantified and paired mean comparisons performed to assess concentration-dependent changes in native protein bands. In vitro, 1,2-DAB produced a concentration-dependent decrease of motor and cytoskeletal proteins. While dynein and tau appeared similarly affected by 1,2-DAB, kinesin was most affected by the toxicant. In vivo, 1,2-DAB affected motor and cytoskeletal proteins of sciatic nerves and spinal cord differentially. In general, sciatic nerve proteins were much more affected than spinal cord proteins. The results show that motor proteins that drive axonal transport anterogradely (kinesin) and retrogradely (dynein), cytoskeletal protein NF-M, which is slowly transported in the anterograde direction, and microtubule-associated protein, tau, which is involved in axonal transport, are differentially impacted by 1,2-DAB. By contrast, non-neurotoxic isomer 1,3-diacetylbenzene (1,3-DAB), had no adverse effect on neural proteins either in vitro or in vivo. 2D-Differential in gel electrophoresis (2D-DIGE) of sciatic nerves from neurotoxic 1,2-DAB and non-neurotoxic 1,3-DAB treated rats revealed 197 and 304 protein spots, respectively. This paper is dedicated to my long-time friend Naren L. Banik, Ph.D.  相似文献   

18.
The Action of Tetrodotoxin on Electrogenic Components of Squid Giant Axons   总被引:5,自引:0,他引:5  
Voltage clamp measurements on squid giant axons show that externally applied puffer fish poison, tetrodotoxin, eliminates only the initial inward current component of spike electrogenesis and does not affect the subsequent outward current. The selective effect on Na activation, which is reversible, confirms the view that the movements of Na and K during spike electrogenesis occur at structurally different sites on the membrane. Spike electrogenesis is also blocked when tetrodotoxin is injected into the axon, but the interior of the membrane appears to be somewhat less sensitive to the poison. Differences in reactivity of various electrogenic membrane components to tetrodotoxin are discussed as signifying differences in chemical structures.  相似文献   

19.
20.
Raising the intracellular pH (pHi) above 7.7 in intracellularly perfused squid giant axons causes spontaneous firing of action potentials. The firing frequency ranged from 20 Hz at 0 degrees C to 200 Hz at 23 degrees C. Above 23 degrees C, the axons were quiescent. They were bistable for 13 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号