首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intracellular distribution of the glucocorticosteroid and progesterone receptors (GR and PR, respectively) was studied immunohistochemically. In control adrenalectomized (Adx) rat liver, immunostaining of paraffin sections revealed GR in cell nuclei, with a wide range of intensity between individuals. Following dexamethasone (Dex) treatment, the nuclear staining was uniformly high in all animals; the cytoplasmic staining was always weak and remained unchanged after Dex treatment. In frozen sections, the GR immunoreactivity in cell nuclei was weak in the absence and very strong in the presence of Dex, while no GR-specific cytoplasmic staining was observed. In frozen sections fixed in vapor of formaldehyde to avoid any artifactual redistribution of the receptor, some GR immunostaining was observed in the cytoplasm and the nucleus. In contrast, in paraffin as well as in frozen sections of chick oviduct, fixed by immersion or in vapor, PR was exclusively nuclear, including in the absence of progesterone, and the intensity of immunostaining was not modified by progesterone treatment. In order to verify if loss of nuclear receptors during tissue preparation could explain the differences in nuclear immunostaining observed between hormone-free and hormone-occupied GR, and between GR and PR, frozen sections of Adx rat liver and chick oviduct were preincubated at 4 degrees C in buffer solutions before the fixation procedure. It was found that hormone-free GR diffused out of the nucleus faster than hormone-occupied GR nuclei, and that nuclear GR diffused faster than nuclear PR. Based on these results, we propose that, during the fixation procedure, the fraction of nuclear GR which diffuses out of the nucleus is much smaller in the presence than in the absence of Dex. This lesser loss of nuclear GR after Dex treatment results in an increase of immunostaining after hormonal administration, which might have been erroneously interpreted as a sign of translocation from cytoplasm to nucleus. That the nuclear PR detection is not modified by progesterone treatment may be explained by its reduced diffusibility as compared to nuclear GR. This hypothesis does not rule out the existence of some cytoplasmic GR, whose significance remains unclear, but it offers a unified mechanism of action for all steroid hormone receptors. In the case of glucocorticosteroids, as already proposed for estradiol and progesterone, no step of cytoplasm to nucleus translocation would be required for hormone action, and transformation-activation would occur in the nucleus, resulting in tighter binding of the hormone receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Recent reports, both biochemical and morphological, have challenged the widely accepted two-step model of steroid hormone action. This model proposed that steroid hormone receptors existed under two different forms: the unliganded receptor in the cytoplasm and the hormone-bound receptor complex in the nucleus. A nuclear translocation mechanism was hypothesized as a necessary link between the two forms. In contradiction with this model, new studies have concluded to the absence of receptor in the cytoplasm and its presence in the nucleus under all hormonal conditions, thus rendering the hypothetical nuclear translocation unnecessary. In this review, we discuss how our concept of the mechanism of action of steroid hormone ought to be revised in the light of the new data.  相似文献   

4.
A life-long search for the molecular pathways of steroid hormone action   总被引:6,自引:0,他引:6  
The O'Malley laboratory first showed that estrogen and progesterone act in the nucleus to stimulate synthesis of specific mRNAs (ovalbumin and avidin), coding for their respective inducible proteins. The overall molecular pathway of steroid-receptor-DNA-mRNA-protein-function was then established and provided a coherent foundation for future studies of the impact of estrogen and progesterone receptors on endocrine tissue development, adult function, and in pathologies such as cancer. The lab group went on to: biochemically demonstrate ligand-induced conformational activation of progesterone and estrogen receptors, discover the concept of ligand-independent activation of steroid receptors, discover key steroid receptor coactivator intermediary coactivators for receptor function, and define the role of coactivators/corepressors in selective receptor modulator drug action and in cell homeostasis. This body of work advanced our molecular understanding of the critical role of steroid hormones in normal and abnormal physiology and also generated a base of scientific knowledge that served to further modern hormonal therapy and disease management.  相似文献   

5.
The nonactivated progesterone receptor is a nuclear heterooligomer   总被引:6,自引:0,他引:6  
The discovery of the nuclear localization of estradiol and progesterone receptors in the absence of the steroid hormone has led to reconsideration of the model of cytoplasmic to nuclear translocation of these receptors upon exposure to hormone. Unoccupied nonactivated receptors are thought to be weakly bound to nuclei of target cells from which they are leaking during tissue fractionation and thus found in the cytosol fraction of homogenates in a nontransformed heterooligomeric "8-9 S" form, which includes hsp90. However, no direct biochemical evidence has yet been obtained for the presence of such heterooligomers in the target cell nucleus, possibly because it dissociates in high ionic strength medium used for extraction of the nuclear receptor. We took advantage of the combined stabilizing effects of tungstate ions and antiprogestin RU486 to extract a nuclear non-DNA binding nontransformed 8.5 S-RU486-progesterone receptor complex from estradiol-treated immature rabbit uterine explants incubated with the antagonist. As demonstrated by immunological criteria and by irreversible cross-linking with dimethylpimelimidate, the complex contained, in addition to the hormone binding unit, hsp90, and p59, another nonhormone binding protein. Control experiments carried out with the progestin R5020 yielded the expected nuclear transformed DNA binding 4.5 S-R5020-progesterone receptor complex. These results offer evidence for two distinct forms of steroid receptor in target cell nuclei. Besides the classical "4 S" agonist-receptor complex, tightly bound to the DNA-chromatin structure and in all probability able to trigger the hormonal response, we have observed in the RU486-bound state a non-DNA binding nontransformed 8.5 S form, presumably already present in the nucleus in the absence of hormone and representing the native nonactive form of the receptor.  相似文献   

6.
The nuclear localization of estrogen receptors has been examined under conditions which minimize redistribution and localization artifacts. A procedure is presented which rapidly lyses suspensions of cells from immature rat uteri by using 0.04% Triton X-100 in isotonic buffer. The ‘nuclei’ which are obtained after lysis have a median diameter of 1μm and are devoid of nuclear membranes. There is close agreement between the number of cells before lysis and the number of nuclear particles after lysis. Triton X-100 gave no interference with quantitative binding of estradiol to receptor and no alteration in the sedimentation behavior of receptor on sucrose gradients containing high or low salt. Using this procedure to monitor the dynamics of estrogen receptor distribution within uterine cells after exposure to estradiol, translocation of estrogen receptor to the nucleus was observed to occur at a rate slightly slower than the rate at which estradiol was specifically bound to free cells or receptors. The difference in these rates is compatible with a model in which estradiol must first bind to the receptor before the binding complex moves to the nucleus. The rate of nuclear translocation was temperature-dependent and was observed to occur at 0 °C, provided that enough time was allowed for steroid entry, receptor charging and transit to the nucleus. Two distinct phases were observed to characterize nuclear receptor localization. In the first phase after hormone exposure, estrogen receptor progressively accumulated in the nucleus; afterwards, estrogen receptor was progressively lost from the nucleus but could not be detected in other subcellular compartments in a form still binding hormone. Since high cell viability was maintained during these manipulations, loss of nuclear receptor was not due to cell damage during in vitro incubation. These studies suggest that this decline in nuclear receptor level after hormone interaction, which is known to occur in vivo, may be a normal event during estrogen interaction with target cells.  相似文献   

7.
The role of estrogen receptor on ovalbumin mRNA induction by steroid hormones was investigated in primary cultures of oviduct cells from estrogen-stimulated immature chicks of genetically selected high- and low-albumen egg laying lines (H- and L-lines). In experiment 1,the extent of ovalbumin mRNA induction and changes in estrogen and progesterone receptors were compared between the oviduct cells from H- and L-lines with or without steroid hormones in the culture medium. In experiment 2, the effect of estrogen receptor gene transfection on the induction of ovalbumin mRNA was studied in the oviduct cells from the L-line chicks. The results showed a close correlation of the changes in ovalbumin mRNA with the numbers of nuclear and total estrogen receptors in the oviduct cells but not with the numbers of nuclear and total progesterone receptors. Estrogen receptor gene transfection induced ovalbumin mRNA to a moderate extent in the absence of the steroid hormones. To our surprise, however, estrogen receptor gene transfection apparently suppressed the ovalbumin mRNA responsiveness to estrogen to a considerable extent. It was concluded, therefore, that the extent of estrogen receptor expression might not be primarily responsible for the differences in responsiveness to steroid hormones of oviduct cells from genetically selected H- and L-line chickens.  相似文献   

8.
Previous studies on glucocorticoid receptors have suggested the existence of interactions between the receptor and microtubule or actin networks. It was hypothesized that such interactions may contribute to the guidance of steroid hormone receptors towards the nucleus. We used a permanent L cell line expressing the delta 638-642 progesterone receptor. This mutant has all the characteristics of the wild type receptor except that the deletion of five amino acids inactivates the constitutive karyophilic signal. Consequently, the receptor is cytoplasmic in the absence of hormone but is shifted into the nucleus when administration of hormone activates the second karyophilic signal. Optical microscopy and confocal laser microscopy were used in intact cells or in cells depleted of soluble elements by permeabilization with detergents. By immunofluorescence, the receptor was found to be mainly concentrated in the perinuclear area. A small fraction of progesterone receptor (PR) persisted in this region after Triton X100 treatment. These observations suggested that the receptor could interact with some insoluble constituent(s) of the cytoplasm. However, careful colocalization studies showed that this heterogenous distribution was not due to interactions with microtubule, microfilament, or intermediate filament networks. Functional involvement of these networks in the translocation of the receptor into the nucleus was studied after cell treatment with cytoskeletal drugs such as nocodazole, demecolcine and cytochalasin. None of these compounds prevented or even delayed the hormone-dependent transfer of delta 638-642 PR into the nucleus. Similar conclusions were reached with the wild type receptor expressed by transfection in Cos-7 cells. PR was shifted from the nucleus into the cytoplasm by administration of energy-depleting drugs. After disruption of the various cytoskeletal networks normal nuclear reaccumulation of the receptor was observed when these drugs were removed. The results thus suggest that the progesterone receptor is not colocalized with the main cytoskeletal components. Disruption of the cytoskeletal networks does not prevent its nuclear translocation. Thus, karyophilic signals and interactions with the nuclear pore seem to be the primary determinants of the cellular traffic of the progesterone receptor.  相似文献   

9.
10.
Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.  相似文献   

11.
The progesterone receptors from various stages of estrogen induced oviduct development, estrogen withdrawal, and secondary stimulation with estrogen were examined. The progesterone receptors were characterized for their biological function (i.e. capacity for nuclear translocation, nuclear binding, and effects on RNA polymerase II activity) as well as certain physical properties. The progesterone receptors from the undeveloped or partially developed oviducts (0 to 8 days of estrogen treatment) displayed little or no nuclear translocation and binding in vivo or in vitro. Similarly, progesterone showed little or no effect in vivo on RNA polymerase II activity at the early stages of development. As development progressed from 8 to 12 days of estrogen treatment, the above parameters rapidly increased to maximal levels and plateaued through day 23 of estrogen treatment. A marked decrease in these parameters occurred within 1 day of estrogen withdrawal. The reverse series of events occurred during secondary estrogen stimulation of 10-day-old withdrawn chicks. While the receptor concentrations increased rapidly to maximum values by 2 days of restimulation, receptor function did not return until day 4. Similarly, the effects of progesterone on RNA polymerase II activity reached maximal values by day 4. The progesterone receptor isolated from oviducts during development, estrogen withdrawal, and restimulation, displayed similar patterns of cell-free binding to chromatin and nucleoacidic protein as that observed in vivo supporting the nativeness of the in vitro binding assay. In contrast, the cell-free binding of these same progesterone receptor to pure DNA were not similar to the in vivo binding, i.e. no patterns (differences) in progesterone receptor binding were observed. These data support that protein DNA complexes and not pure DNA represent the native acceptor sites for oviduct progesterone receptor. Comparison of the progesterone receptor between the functional and nonfunctional states revealed no differences in the steroid affinity for the receptor, in the apparent pI of the species, or in the sedimentation of the receptor under high salt conditions. However, the nonfunctional receptors consistently displayed a deficiency in one of the two monomer molecular species (the B species) as determined by isoelectric focusing. These results suggest that both monomer species of progesterone receptor are required for biological activity. Interestingly, the 7S "aggregate" species of the progesterone receptor was constantly detected even when only one of the monomer species was present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

14.
15.
16.
17.
Levels of magnal estrogen and progesterone receptors during egg formation in the hen were determined. Hens were sacrificed at various times after ovulation and magnal receptor levels were determined by tritiated hormone binding assays. A coincident increase in nuclear estrogen receptor and decrease in cytosol estrogen receptor 2 to 4 h postoviposition was suggestive of in vivo receptor translocation. At 12 to 16 h postoviposition cytosol progesterone receptor increased 2-fold and subsequently declined during the time of preovulatory progesterone surge (8 h to 6 h prior to expected ovulation). These data suggest that changes in circulating levels of estrogen and progesterone, associated with ovulation, are coordinated with oviductal function. This is reflected by fluxes of their respective oviductal receptors.  相似文献   

18.
Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.  相似文献   

19.
The present studies examine the effects of neonatal treatment with monosodium glutamate (MSG) on dopamine (DA), 5-hydroxytryptamine (5-HT) and norepinephrine (NE) metabolism in discrete brain regions and correlate them with steroid receptor kinetics in the anterior pituitary (PIT), preoptic hypothalamus (POA) and caudal hypothalamus (HYP), and with steroid negative and positive feedback effects on luteinizing hormone (LH) secretion. Substantial decreases in the neuronal activity of all three amines in the arcuate nucleus, decreased DA and 5-HT metabolism in the suprachiasmatic nucleus and, surprisingly, increased metabolism of 5-HT and NE in the median eminence was observed in adult ovariectomized (OVX), MSG-treated versus OVX, vehicle-treated litter mate controls. Measurement of estradiol receptors in the nuclear and cytosolic fractions of the POA, HYP and PIT from MSG- and vehicle-treated rats killed during diestrus or 2 weeks after OVX revealed no differences. Similarly, no differences in cytosolic progestin receptors between control and MSG unprimed or estradiol-primed, OVX rats or on progestin receptor translocation induced by progesterone in Eb-primed rats were observed. Negative and positive feedback effects of estradiol or the positive feedback of progesterone on LH secretion were not significantly impaired in MSG rats, and indeed, MSG animals actually were hyper-responsive to the administration of the steroids or of luteinizing hormone-releasing hormone. These results indicate that the MSG-induced damage to DA, 5-HT and NE elements observed within several preoptic and hypothalamic nuclei does not impair estrogen and progestin receptor kinetics, nor does it prevent adequate negative or positive steroid feedback responses, if appropriate steroid regimens are employed, and that the impaired gonadal function reported in these animals does not result primarily from inadequate steroid feedback mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号