首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seven trials conducted over four years on sites naturally infested with the white potato cyst nematode established that potato clones bred for resistance to Globodera pallida allowed significantly less nematode multiplication than conventional cultivars under field conditions. Nematode multiplication was inversely related to initial infestation level. The nematicide, aldicarb, significantly reduced nematode multiplication. However, nematode multiplication on nematicide treated susceptible cultivars was greater than on untreated partially resistant clones, indicating that resistance may offer more effective control of G. pallida than chemical treatment. Integration of host plant resistance and nematicide treatment is discussed.  相似文献   

3.
Three field experiments were made to determine the effectiveness of small-plot trials in detecting differences between potato cultivars/clones in their tolerance of damage by potato cyst-nematodes. A nematicide (aldicarb) was applied at three rates to decrease nematode damage. The largest rate of aldicarb increased tuber yields most but the relationship between yield response and nematicide rate was not linear. The yield increases of the cultivars and clones differed, indicating that they have different degrees of tolerance of potato cyst nematodes. The results were analysed in several ways and the untreated yield as a proportion of the treated provided the best means of expressing and comparing tolerance; but whichever method was used the tolerance rankings of the cultivars and clones were similar. At two sites infested with Globodera rostochiensis, the rankings of the 10 cultivars and clones were similar but at a third site, heavily infested with G. pallida, they were different. Aldicarb decreased the nematode population density after harvest at the G. pallida site but was less effective at the G. rostochiensis sites, which were less heavily infested. Growing resistant or partially resistant potatoes usually prevented nematode increase, and the more resistant cultivars and clones decreased population densities markedly.  相似文献   

4.
Plants of potato (Solanum tuberosum) cultivars Katahdin and Superior were inoculated with 0, 1,500, or 15,000 Pratylenchus penetrans. Transpiration, measured in the greenhouse with a porometer after 56 days of growth, was not significantly different among nematode inoculum levels or between cultivars. The rate of xylem exudation from decapitated root systems of Katahdin plants inoculated with 1,500 or 15,000 P. penetrans and Superior plants inoculated with 15,000 P. penetrans was lower than from noninoculated plants. Root weight of Katahdin and Superior was not affected by P. penetrans inoculum level. Transpiration of plants inoculated with 0, 500, 5,000 or 50,000 P. penetrans was recorded weekly from 14 to 56 days after planting. No consistent effects of nematode inoculum density on transpiration rate were observed. Root hydraulic conductivity was lower in Katahdin plants inoculated with 266 P. penetrans per plant and in Chippewa with 5,081 per plant than in noninoculated plants. Nematodes reduced leaf area of Superior, Chippewa, and Katahdin and root dry weight of Chippewa but had no effect on growth of Hudson, Onaway, or Russet Burbank plants. Assessing nematode effects on root hydraulic conductivity may provide a measure of the tolerance of potato cultivars to nematodes.  相似文献   

5.
The interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and the root-knot nematode (Meloidogyne hapla) was investigated using both nematode-susceptible (Grasslands Wairau) and nematode-resistant (Nevada Synthetic XX) cultivars of alfalfa (Medicago sativa) at four levels of applied phosphate. Mycorrhizal inoculation improved plant growth and reduced nematode numbers and adult development in roots in dually infected cultures of the susceptible cultivar. The tolerance of plants to nematode infection and development when preinfected with mycorrhizal fungi was no greater than when they were inoculated with nematodes and mycorrhizal fungi simultaneously. Growth of plants of the resistant cultivar was unaffected by nematode inoculation but was improved by mycorrhizal inoculation. Numbers of nematode juveniles were lower in the roots of the resistant than of the susceptible cultivar and were further reduced by mycorrhizal inoculation, although no adult nematodes developed in any resistant cultivar treatment. Inoculation of alfalfa with VAM fungi increased the tolerance and resistance of a cultivar susceptible to M. hapla and improved the resistance of a resistant cultivar.  相似文献   

6.
Field experiments were carried out in 1991 and 1992 on sandy soil highly infested with the potato cyst nematode Globodera pallida. Half the trial area was fumigated with nematicide to establish two levels of nematode density. Three levels of soil compaction were made by different combinations of artificial compaction and rotary cultivation. Two potato cultivars were used in 1991 and four in 1992. Both high nematode density and soil compaction caused severe yield losses, of all cultivars except cv. Elles which was tolerant of nematode attack. The effects of the two stress factors were generally additive. Analysis of the yield loss showed that nematodes mainly reduced cumulative interception of light while compaction mainly reduced the efficiency with which intercepted light was used to produce biomass. This indicates that nematodes and compaction affect growth via different damage mechanisms. Nematodes reduced light interception by accelerating leaf senescence, by decreasing the specific leaf area and indirectly by reducing overall crop growth rate. Partitioning of biomass between leaves, stems and tubers was not affected by nematode infestation but compaction decreased partitioning to leaves early in the growing season while increasing it during later growth stages. The effects of nematodes and compaction on root length dynamics and nutrient uptake were also additive. This suggests that the commonly observed variation in yield loss caused by nematodes on different soil types is not related to differences in root system expansion between soils of various strength. Cv. Elles, which showed tolerance of nematodes by relatively low yield losses in both experiments, was characterised by high root length density and thick roots. These characteristics did not confer tolerance of soil compaction, since compaction affected root lengths and tuber yields equally in all cultivars. In the first experiment only, high nematode density led to decreased root lengths and lower plant nutrient concentrations. The yield loss which occurred in the second experiment was attributed to the effects of nematodes on other aspects of plant physiology.  相似文献   

7.
The behavior of two isolates of Pratylenchus penetrans on six potato clones was assessed to test the hypothesis that these nematode isolates from New York were different. Four potato cultivars (Superior, Russet Burbank, Butte, and Hudson) and two breeding lines (NY85 and L118-2) were inoculated with nematode isolates designated Cornell (CR) and Long Island (LI). Population increase and egression of nematodes from roots were used to distinguish resistance and susceptibility of the potato clones. Based on numbers of eggs, juveniles, and adults in their roots 30 days after inoculation, potato clones Butte, Hudson, and L118-2 were designated resistant to the CR isolate and susceptible to the LI isolate. More eggs were found in the roots of all plants inoculated with the LI isolate than with the CR isolate. The clones NY85 and L118-2 were inoculated with the CR and LI isolates in a 2 x 2 factorial experiment to assess differences in nematode egression. Egression was measured, beginning 3 days after inoculation, for 12 days. The rates of egression were similar for the four treatments and fit linear regression models, but differences were detected in numbers of egressed nematodes. More nematodes of the CR isolate than the LI isolate egressed from L118-2. Differences in egression of females was particularly significant and can be used as an alternative or supplement to reproduction tests to assess resistance in potato to P. penetrans and to distinguish variation in virulence.  相似文献   

8.
The concept of using a range of Solanaceae potato clones as trap crops for potato cyst nematode (PCN) management was investigated. A series of field trials were undertaken from 1999 to 2002 that evaluated 10 clones of either wild Solanum potato species, breeder’s hybrid lines or commercial cultivars. All had high resistance to all known PCN pathotypes (both Globodera rostochiensis and Globodera pallida) and the ability to stimulate high levels of PCN hatch. Investigations showed potential for the development of some clones as a means of reducing high PCN field population levels and for use by organic potato producers.  相似文献   

9.
The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.  相似文献   

10.
Plants of several potato clones with major gene resistance to potato virus Y (PVY) developed necrotic local lesions and systemic necrosis after manual inoculation with common (PVYo) or veinal necrosis (PVYN) strains of the virus. The clones reacted similarly, although their resistance genes are thought to be derived from four different wild species of Solarium. Mesophyll protoplasts from each clone became infected when inoculated with RNA of PVYo by the polyethylene glycol method. The proportion of protoplasts infected, assessed by staining with fluorescent antibody to virus particles, was similar to that of protoplasts of susceptible potato cultivars. In contrast, plants of potato cultivars Corine and Pirola, which possess gene Ry from S. stoloniferum, developed few or no symptoms when manually inoculated or grafted with PVYo. Moreover, only very few protoplasts of these cultivars produced virus particle antigen after inoculation with PVYo RNA. The extreme resistance to PVY of cvs Corine and Pirola was therefore expressed by inoculated protoplasts whereas the resistance of the necrotic-reacting potato clones was not.  相似文献   

11.
Signals from roots of resistant (cv. Maris Piper) and susceptible (cv. Désirée) potato cultivars during invasion by second stage juveniles (J2s) of the potato cyst nematode, Globodera rostochiensis, were investigated. Novel experimental chambers enabled the recording of electrophysiological responses from roots during nematode invasion. The root cell membrane potentials were maintained throughout the 3 d required to assess invasion and feeding site development. The steady-state resting membrane potentials of Désirée were more negative than those of Maris Piper on day 1, but the reverse on day 3. After 5 d there was no difference between the two cultivars. Intracellular microelectrodes detected marked spike activity in roots after the application of J2s and there were distinct and reproducible differences between the two cultivars, with the response from Désirée being much greater than that from Maris Piper. The responses to mechanical stimulation of roots by blunt micropipettes and sharp electrodes were consistent and similar in both cultivars to the responses in Maris Piper obtained after nematode invasion, but could not account for the marked response found in Désirée. Exogenous application of exoenzymes, used to mimic nematode chemical secretions, resulted in a distinct depolarization pattern that, although similar in both cultivars, was different from patterns obtained during nematode invasion or mechanical stimulation. The pH of homogenates prepared from roots of both cultivars was measured and a Ca2+ channel blocker was used to assess the role of Ca2+ in nematode invasion. The results indicated a role for Ca2+ in the signalling events that occur during nematode invasion.  相似文献   

12.
Globodera rostochiensis population densities and potato root growth were measured in field plots of one susceptible and two resistant potato cultivars. Root growth and nematode densities were estimated from soil samples taken at three depths between plants within the rows, three depths 22.5 cm from the rows, and at two depths midway between rows (furrows). Four weeks after plant emergence (AE), nematode densities in the rows had declined 68% in plots of the susceptible cultivar and up to 75% in plots of both resistant cultivars. Significant decline in nematode densities in the furrows 4 weeks AE occurred only in plots of the susceptible cultivar. Total decline in nematode density in fallow soil was 50%, whereas in plots of the resistant cultivars, decline was more than 70% in the rows and more than 50% in the furrows. Nematode densities increased in the rows of the susceptible cultivar but declined in the furrows. We conclude that G. rostochiensis decline or increase is correlated with host resistance and the amount of roots present at any particular site.  相似文献   

13.
基于发根培养体系的甘薯品种抗线虫特性鉴定研究   总被引:1,自引:0,他引:1  
利用发根农杆菌诱导的甘薯发根体系,鉴定甘薯品种抗线虫的特性。试验在甘薯品种徐薯18、栗子香和鲁78066诱导的发根体系上,接种马铃薯腐烂线虫,六周后调查发根繁殖线虫情况及线虫侵染发根情况,然后评价它们的抗线虫特性。结果表明:培养六周后,线虫在徐薯18、栗子香和鲁78066发根上繁殖倍数分别为8.82,0.76和0.70;在徐薯18发根上观察到多处线虫侵入位点,在栗子香和鲁78066发根上只观察到一处线虫侵入位点;基于以上结果,鉴定徐薯18为易感线虫病品种,栗子香和鲁78066为抗线虫病品种,徐薯18和鲁78066的鉴定结果和发病地自然诱发鉴定结果相一致,栗子香不同于发病地自然诱发鉴定结果。鉴定结果表明:用不同品种的甘薯发根作鉴定其抗线虫特性,具有体系简单、直观方便、重复性好以及不受自然环境影响等优点,进一步完善可以作为植物对线虫病抗性鉴定新的体系。  相似文献   

14.
Using electrofusion of protoplasts from different dihaploid potato breeding clones, 308 somatic hybrids, i.e. 16.7% of the totally regenerated plants, were obtained. The results indicate that factors such as ‘combining ability’ strongly influence hybrid formation in these intraspecific fusion experiments. Hybrid identification was predominantly carried out by isoenzyme analysis of the peroxidases and/or esterases in polyacrylamide-gradient gel electrophoresis. Further confirmation of the hybrid character was obtained by scoring phenotypic markers (petal colour, stem anthocyanin production, tuber characteristics, etc.) and, in some combinations, by evaluating tolerance against the herbicide metribuzin and nematode resistance against Globodera rostochiensis (Ro 1). The successful inheritance of metribuzin tolerance and nematode resistance confirm that monogenic dominant inherited traits are combined in the hybrids.  相似文献   

15.
Effect of short-term (2 h a day) and long-term (6 days) exposure to low temperature (5°C) on cold tolerance was investigated in two cultivars of potato (Solanum tuberosum L.): resistant (Sudarynya) and susceptible (Nevskii) to potato cyst nematode (Globodera rostochiensis Woll.). The extent of their infestation and changes in the expression of the genes of resistance to nematode (H1 and Gro1-4) were also analyzed. In both cultivars, exposure to low temperature enhanced cold resistance of potato plants. Enhancing cold resistance of cv. Sudarynya induced by a short-term exposure to chilling did not affect the extent of nematode infestation, whereas in susceptible cv. Nevskii, the extent of infestation decreased by almost three times. The level of expression of H1 gene in the leaves of the susceptible cultivar rose almost twofold both after short-term and long exposure to chilling, while in the resistant cultivar, gene expression increased only after a short-term effect of cold. The level of Gro1-4 gene expression increased after both temperature treatments only in the resistant cv. Sudarynya. Thus, the expression of genes for potato resistance to nematode infestation became more active in the susceptible cultivar as regards the gene H1 and in the resistant cultivar, regarding the gene Gro1-4. In the nematode-susceptible cv. Nevskii, the level of infestation decreased and cold resistance increased, apparently indicating cross adaptation to two factors of different nature.  相似文献   

16.
Differential gene expression was analyzed after infection with Phytophthora infestans in six potato cultivars with different levels of resistance to late blight. To verify the infection of the potato leaflets, the amount of phytopathogen mRNA within the plant material was quantified by real-time quantitative PCR. The expression of 182 genes selected from two subtracted cDNA libraries was studied with cDNA array hybridization using RNA from non-infected and infected potato leaflets. Gene up- and down-regulation were clearly detectable in all cultivars 72 h post inoculation. Gene expression patterns in susceptible cultivars differed from those in potato varieties with a higher level of resistance. In general, a stronger gene induction was observed in the susceptible cultivars compared to the moderately to highly resistant potato varieties. Five genes with the highest homology to stress and/or defence-related genes were induced specifically in the susceptible cultivars. Four genes responded to pathogen attack independently of the level of resistance of the cultivar used, and three genes were repressed in infected tissue of most cultivars. Even in the absence of P. infestans infection, six genes showed higher expression levels in the somewhat resistant cultivars Bettina and Matilda. Possible reasons for the different levels of gene expression are discussed.  相似文献   

17.
Components of early blight resistance were quantified in leaves of different ages in four potato cultivars. The components of resistance: incubation period (IP), lesion number (LN), early blight severity, lesion expansion rate (LER), latent period (LP) and spore production by lesion area (SPLA), were evaluated separately in the lower, middle and upper leaves of four potato cultivars. Plants of cultivar Aracy (resistant), Delta (moderately resistant), Desirée (susceptible) and Bintje (susceptible) were inoculated with an Alternaria solani isolate at the beginning of the flowering stage. Disease severity varied in different plant parts. In all cultivars, regardless of resistance, the smallest values of LN, and severity were recorded on the upper leaves, suggesting that young tissues are less susceptible. In cultivar Aracy, the IP was long, with small values of LN and LER and consequently, low values of early blight severity in all leaf positions were recorded. Although IP was long in cultivar Aracy, no differences between the moderately resistant cultivar Delta and the susceptible cultivars Bintje and Desirée could be detected for this component. The IP was only influenced by leaf position in cultivar Aracy. Clear differences in resistance levels among cultivars could be detected regarding LN, severity and LER. However, neither LP nor SPLA were associated with resistance level of cultivars or with leaf position. Analyses according to plant part suggest that evaluations on leaves of the middle third part are most suitable for screening for early blight resistance in potato.  相似文献   

18.
Field trials were done with four cultivars over 3 years to assess the extent to which the amount of late blight on the foliage of a potato plant could be influenced by that on a neighbouring plant of the same or a different cultivar. Drills containing the test plants were interspersed with those of spreader plants (cv. King Edward) which were artificially inoculated with Phytophthora infestans. The intensity of blight on the test plants was recorded on several occasions.
Resistant cultivars tended to be scored as less resistant in mixtures with other cultivars than in pure stands, and susceptible cultivars tended likewise to be scored as more resistant in mixed stands. However, standard analysis of variance indicated no systematic evidence of a significant effect due to neighbour cultivars, nor of interaction between cultivars and neighbour cultivars. In contrast, Kempton's (1982) neighbour model indicated a significant and positive interference coefficient (β) in each trial, which generally decreased over time. Predicted pure stand scores for each cultivar indicated that the adjustment was greatest for the most resistant and most susceptible cultivars. There was no advantage in using two-plant rather than one-plant plots in withstanding neighbour effects.  相似文献   

19.
Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms.  相似文献   

20.
Two cultivars of potato (Solanum tuberosum L.) were transformed with a barley antiporter gene HvNHX2 driven by the CaMV 35S promoter. The expressed transgene conferred a higher NaCl tolerance to one of the cultivars. Under salt stress, the more salt-tolerant transgenic plants had longer roots, higher dry weight, and suppressed cell expansion as compared to wild-type plants. The salt tolerance of the plants grown in vitro was not accompanied by elevated total sodium in any plant organs tested. Instead, higher potassium was found in roots of transgenic plants. Possible mechanisms of plant salt tolerance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号