首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila embryonic Central Nervous System (CNS) develops from the ventrolateral region of the embryo, the neuroectoderm. Neuroblasts arise from the neuroectoderm and acquire unique fates based on the positions in which they are formed. Previous work has identified six genes that pattern the dorsoventral axis of the neuroectoderm: Drosophila epidermal growth factor receptor (Egfr), ventral nerve cord defective (vnd), intermediate neuroblast defective (ind), muscle segment homeobox (msh), Dichaete and Sox-Neuro (SoxN). The activities of these genes partition the early neuroectoderm into three parallel longitudinal columns (medial, intermediate, lateral) from which three distinct columns of neural stem cells arise. Most of our knowledge of the regulatory relationships among these genes derives from classical loss of function analyses. To gain a more in depth understanding of Egfr-mediated regulation of vnd, ind and msh and investigate potential cross-regulatory interactions among these genes, we combined loss of function with ectopic activation of Egfr activity. We observe that ubiquitous activation of Egfr expands the expression of vnd and ind into the lateral column and reduces that of msh in the lateral column. Through this work, we identified the genetic criteria required for the development of the medial and intermediate column cell fates. We also show that ind appears to repress vnd, adding an additional layer of complexity to the genetic regulatory hierarchy that patterns the dorsoventral axis of the CNS. Finally, we demonstrate that Egfr and the genes of the achaete-scute complex act in parallel to regulate the individual fate of neural stem cells.  相似文献   

2.
MyD88 is an adapter protein in the signal transduction pathway mediated by interleukin-1 (IL-1) and Toll-like receptors. A Drosophila homologue of MyD88 (DmMyD88) was recently shown to be required for the Toll-mediated immune response. In Drosophila, the Toll pathway was originally characterized for its role in the dorsoventral patterning of the embryo. We found that, like Toll, DmMyD88 messenger RNA is maternally supplied to the embryo. Here we report the identification of a new mutant allele of DmMyD88, which generates a protein lacking the carboxy-terminal extension, normally located downstream of the Toll/IL-1 receptor domain. Homozygous mutant female flies lay dorsalized embryos that are rescued by expression of a transgenic DmMyD88 complementary DNA. The DmMyD88 mutation blocks the ventralizing activity of a gain-of-function Toll mutation. These results show that DmMyD88 encodes an essential component of the Toll pathway in dorsoventral pattern formation.  相似文献   

3.
The ectopic expression of the master ey gene by the GAL4-UAS system can induce ectopic eye formation in different organs. The formation of ectopic eyes takes place in certain regions of imaginal discs, which partially overlap with the regions responsible for the transdetermination of differentiated cells (essentially meaning the alteration of the cell fate). In this way, ectopic eye induction could be considered as a model for cellular plasticity studies. In the present work, we performed a search for transgenes, the ectopic coexpression of which with the master ey gene induced morphologic changes in the ectopic eyes on the wing compared to the sole ey expression. Most of the transgenes found to affect the size of ectopic eyes belonged to the class of vesicular trafficking genes capable of affecting different signaling pathways. The ectopic expression of the revealed transgenes in the wing and eye discs altered the morphology of both normal wings and normal eyes. We argue that the effect of these genes may be that they change the size of the region responsible for cell fate transdetermination.  相似文献   

4.
The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFalpha-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Sp?tzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.  相似文献   

5.
6.
Genetic modifiers of tauopathy in Drosophila   总被引:6,自引:0,他引:6  
Shulman JM  Feany MB 《Genetics》2003,165(3):1233-1242
In Alzheimer's disease and related disorders, the microtubule-associated protein Tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles. Mutations in the tau gene cause familial frontotemporal dementia. To investigate the molecular mechanisms responsible for Tau-induced neurodegeneration, we conducted a genetic modifier screen in a Drosophila model of tauopathy. Kinases and phosphatases comprised the major class of modifiers recovered, and several candidate Tau kinases were similarly shown to enhance Tau toxicity in vivo. Despite some clinical and pathological similarities among neurodegenerative disorders, a direct comparison of modifiers between different Drosophila disease models revealed that the genetic pathways controlling Tau and polyglutamine toxicity are largely distinct. Our results demonstrate that kinases and phosphatases control Tau-induced neurodegeneration and have important implications for the development of therapies in Alzheimer's disease and related disorders.  相似文献   

7.
Notch (N) activation at the dorsoventral (DV) boundary of the Drosophila eye is required for early eye primordium growth. Despite the apparent DV mirror symmetry, some mutations cause a preferential loss of the ventral domain, suggesting that the growth of individual domains is asymmetrically regulated. We show that the Lobe (L) gene is required non-autonomously for ventral growth but not dorsal growth, and that it mediates the proliferative effect of midline N signaling in a ventral-specific manner. L encodes a novel protein with a conserved domain. Loss of L suppresses the overproliferation phenotype of constitutive N activation in the ventral, but not in the dorsal eye, and gain of L rescues ventral tissue loss in N mutant background. Furthermore, L is necessary and sufficient for the ventral expression of a N ligand, Serrate (Ser), which affects ventral growth. Our data suggest that the control of ventral Ser expression by L represents a molecular mechanism that governs asymmetrical eye growth.  相似文献   

8.
Oh CT  Kwon SH  Jeon KJ  Han PL  Kim SH  Jeon SH 《FEBS letters》2002,531(3):427-431
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm.  相似文献   

9.
10.
Induction and dorsoventral patterning of the telencephalon   总被引:7,自引:0,他引:7  
Wilson SW  Rubenstein JL 《Neuron》2000,28(3):641-651
  相似文献   

11.
12.
13.
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord.  相似文献   

14.
Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), and (v) nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin.  相似文献   

15.
16.
17.
18.
Dorsoventral patterning of the Drosophila ventral neuroectoderm is established by the expression of three evolutionarily conserved homeodomain genes: ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh) in the medial, intermediate, and lateral columns of the ventral neuroectoderm, respectively. It was not clear whether extrinsic factor(s) from the CNS midline cells influence the initial dorsoventral patterning by controlling the expression of the dorsoventral patterning genes. We show here that the CNS midline cells, specified by single-minded (sim), are essential for maintaining expression of the dorsoventral patterning genes. Ectopic expression of sim in the ventral neuroectoderm during the blastoderm stage repressed expression of the three homeodomain genes in the ventral neuroectoderm. This indicates that the identity of the CNS midline cells is established by a series of repressions of the three homeodomain genes in the ventral neuroectoderm. Ectopic expression of sim in the ventral neuroectoderm during initial neurogenesis induced ectopic ind expression in the medial column in addition to that in the intermediate column via EGFR signaling between the ventral neuroectoderm and midline cells. In contrast, it repressed the expression of vnd and msh in the medial and lateral columns, respectively. Our findings demonstrate that the CNS midline cells provide extrinsic positional information via EGFR signaling that maintains the initial subdivision of the ventral neuroectoderm into three dorsoventral columns during initial neurogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号