首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

2.
Although the role of introns in eucaryotic nuclear genes has been much debated, it remains underinvestigated in fungi. The AS1 gene of Podospora anserina contains three introns and encodes a ribosomal protein (S12) belonging to the well-conserved bacterial S19 family. We attempted to complement the highly pleiotropic mutation AS1-4 with a cDNA encoding the homologous human (S15) protein (rig gene) under the control of the AS1 promoter. In a control experiment, the AS1 + cDNA was unable to complement fully the AS1-4 mutation. It was assumed that the AS1 cDNA was not well expressed and that the AS1 gene needed intron(s) to be efficiently expressed. Addition of the first intron of the AS1 gene to the AS1 and rig cDNAs did indeed allow complementation of all the phenotypic defects of the AS1-4 mutation. These data lead to two main conclusions. First, the human S15 ribosomal protein is functional in Podospora. Second, full expression of the Podospora AS1 gene requires at least one intron.  相似文献   

3.
A yeast ribosomal protein gene whose intron is in the 5' leader   总被引:13,自引:0,他引:13  
  相似文献   

4.
E G Niles  R K Jain 《Biochemistry》1981,20(4):905-909
  相似文献   

5.
6.
Although the role of introns in eucaryotic nuclear genes has been much debated, it remains underinvestigated in fungi. The AS1 gene of Podospora anserina contains three introns and encodes a ribosomal protein (S12) belonging to the well-conserved bacterial S19 family. We attempted to complement the highly pleiotropic mutation AS1-4 with a cDNA encoding the homologous human (S15) protein (rig gene) under the control of the AS1 promoter. In a control experiment, the AS1 + cDNA was unable to complement fully the AS1-4 mutation. It was assumed that the AS1 cDNA was not well expressed and that the AS1 gene needed intron(s) to be efficiently expressed. Addition of the first intron of the AS1 gene to the AS1 and rig cDNAs did indeed allow complementation of all the phenotypic defects of the AS1-4 mutation. These data lead to two main conclusions. First, the human S15 ribosomal protein is functional in Podospora. Second, full expression of the Podospora AS1 gene requires at least one intron. Received: 26 April 1996 / Accepted: 22 August 1996  相似文献   

7.
An open reading frame upstream of the Methanococcus vannielii L12 gene has been detected. The beginning of this open reading frame agrees with the N-terminal region of a protein (MvaL10) which has been isolated from the 50 S ribosomal subunit of M. vannielii and sequenced. The length of this gene is 1008 nucleotides, coding for 336 amino acids. Excellent sequence similarities were found to the L10-like ribosomal proteins from Halobacterium halobium and man. The N-terminal part of the MvaL10 protein shows significant sequence similarities to the E. coli L10 protein. MvaL10 is more than twice as long as E. coli L10 but is of length similar to those of the homologous halobacterial and human proteins. Interestingly, the C-terminal region of MvaL10 shows exceptionally high similarity to the C-terminal sequence of the MvaL12 protein. This is not the case for the E. coli proteins but was also observed for the human, Halobacterium and Sulfolobus proteins.  相似文献   

8.
We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'.  相似文献   

9.
10.
Mutations in a semiconserved region of the Tetrahymena intron   总被引:1,自引:0,他引:1  
U Pace  J W Szostak 《FEBS letters》1991,280(1):171-174
The A-rich bulge in paired region P5a of the Tetrahymena intron is a structural feature that is conserved in the sub-group Ib self-splicing introns. We have constructed a series of substitution and deletion mutations in this region of the intron. Kinetic analysis has shown that some of the mutants have a reduced maximal extent of splicing, while others have a reduced Vmax. These mutations could be reactivated to a great extent by spermidine and high Mg2+ concentrations. These data are consistent with the hypothesis that the A-rich bulge of P5a has a role in stabilizing the higher-level structure of the ribozyme.  相似文献   

11.
Hagen M  Cech TR 《The EMBO journal》1999,18(22):6491-6500
The Tetrahymena pre-rRNA self-splicing intron is shown to function in the unnatural context of an mRNA transcribed by RNA polymerase II in mammalian cells. Mutational analysis supports the conclusion that splicing in cells occurs by the same RNA-catalyzed mechanism established for splicing in vitro. Insertion of the intron at five positions spanning the luciferase open reading frame revealed 10-fold differences in accumulation of ligated exons and in luciferase activity; thus, the intron self-splices in many exon contexts, but the context can have a significant effect on activity. In addition, even the best self-splicing constructs, which produced half as much mRNA as did an uninterrupted luciferase gene, gave approximately 100-fold less luciferase enzyme activity, revealing an unexpected discontinuity between mRNA production and translation in cells. The finding that production of accurately spliced mRNA in cells does not guarantee a corresponding level of protein production is surprising, and may have implications for the development of trans-splicing ribozymes as therapeutics.  相似文献   

12.
13.
M A Wild  J G Gall 《Cell》1979,16(3):565-573
  相似文献   

14.
M C Yao  J G Gall 《Cell》1977,12(1):121-132
The macronucleus of the protozoan, Tetrahymena, is known to contain multiple rRNA genes which are not linked to the chromosomes. Here we present evidence that the germinal micronucleus of this organism contains a single gene for rRNA integrated into the chromosomal DNA. Unlike the extrachromosomal copies of the macronucleus, which are composed of a pair of reversely repeated sequences (a palindrome), the integrated copy of rDNA is nonrepetitive or half the size of the extrachromosomal rDNA. Furthermore, we have failed to detect such an integrated copy of rDNA in the macronucleus. The implications of these observations for the amplification and evolution of rDNA are discussed.  相似文献   

15.
Multiple introns have been found in a gene from a ciliated protozoan. This Tetrahymena thermophila gene (cnjB) is large (7.5 kb mRNA) and active only during conjugation, the organism's sexual cycle. Six introns ranging in size from 62 bp to 676 bp were found when we sequenced a 3.1 kb segment of the cnjB gene together with its corresponding cDNA. We estimate, by extrapolation of our current data, a total of approximately 30 introns in this gene with a total gene size (introns plus exons) of 15 kb or more. The number of introns is surprising given the scarcity of introns in ciliate genes examined to date. Our findings constitute the first example of multiple introns in a ciliate gene. Having the sequence of several introns has allowed us to construct consensus sequences for T. thermophila mRNA introns. The 5' and 3' intron junctions resemble those of general nuclear mRNA (GT/AG rule is followed) but differences are seen. In particular, stretches of 10 or more adenines and thymines are found adjacent to the conserved GT and AGs at the junctions. Unusual aspects of the coding region of this gene are discussed.  相似文献   

16.
Recombinant human ribosomal protein S16 (rpS16) is shown to bind specifically to a fragment of its own pre-mRNA that includes exons 1 and 2, intron 1, and part of intron 2, and to inhibit the splicing of the fragment in vitro. The weaker binding of other recombinant human ribosomal proteins, S10 and S13, to this pre-mRNA fragment indicated that the binding of rpS16 was specific. Besides, the poly(AU) and rpS16 mRNA fragment insignificantly affected the binding of rpS16 to its pre-mRNA, providing another evidence that the interaction was specific. rpS16 specifically inhibited the splicing of the pre-mRNA fragment, whereas recombinant rpS10 and rpS13 did not affect intron excision from this pre-mRNA fragment in contrast to rpS16. Those positions in rpS16 pre-mRNA fragment that were protected by rpS16 from cleavage by RNases T1, T2, and V1 were found to be located closely to the branch point and 3’ splice site in the pre-mRNA. The obtained results suggest the possibility of the autoregulation of rpS13 pre-mRNA splicing through the feedback mechanism.  相似文献   

17.
18.
19.
Structure of a ribosomal protein gene in Mucor racemosus.   总被引:1,自引:1,他引:1       下载免费PDF全文
L Sosa  W A Fonzi    P S Sypherd 《Nucleic acids research》1989,17(22):9319-9331
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号