首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

2.
Leukotriene B4 binding sites were investigated in alveolar macrophages obtained from guinea-pigs by brochoalveolar lavage. Analysis of the binding data was compatible with a two-receptors model. Best-fit computer-assisted evaluation of the results yielded a KD = 0.33 +/- 0.18 nM with 618 +/- 138 binding sites/cell for the high-affinity receptor, and KD = 52.9 +/- 12.3 nM with 95,400 +/- 37,900 sites/cell for the low-affinity binding site. Study of the dissociation rate of labelled ligand induced by dilution only and by dilution plus excess unlabelled ligand showed no differences in the two situations. These data suggest that the finding of two receptors is not due to negative cooperativity. Since most studies failed to demonstrate two distinct LTB4-binding proteins, the present results reinforces the hypothesis of LTB4 receptors in guinea-pig alveolar macrophages being a single protein with interchangeable affinity states.  相似文献   

3.
The uptake of Quin-2 by human polymorphonuclear (PMN) leukocytes permitted accurate fluorimetric quantification of the cytosolic concentration of intracellular calcium [( Ca+2]in), without altering the expression of the two subsets of leukotriene B4 (LTB4) receptors, as assessed by the binding of [3H]LTB4. Chemotactic concentrations of LTB4 elicited a rapid increase in [Ca+2]in, which reached a peak within 0.6 to 1 min and then decayed back to baseline levels by 6 to 10 min. The maximal increase and the half-maximal increase in [Ca+2]in were achieved by LTB4 at mean concentrations of 5 X 10(-10) M and 2 X 10(-10) M, respectively, where the binding of LTB4 to high-affinity receptors predominates. A rank order of potency of LTB4 greater than 5(S),12(S)-6-trans-LTB4 greater than 12(S)-LTB4 was established for the elicitation of increases in [Ca+2]in, which reflects the binding of the isomers to low-affinity receptors. PMN leukocytes were preincubated with 10(-8) M LTB4 to induce chemotactic deactivation, which eliminates the expression of high-affinity receptors without altering the expression of the low-affinity receptors for LTB4. LTB4 elicited an increase in [Ca+2]in in the deactivated PMN leukocytes with an EC50 of 3 X 10(-8) M, which is similar to the Kd for LTB4 binding to the low-affinity receptors. Two lines of cultured human leukemic cells, IM-9 and HL-60, did not bind LTB4 specifically and did not show any change in [Ca+2]in upon the addition of 3 X 10(-8) M LTB4. The HL-60 human promyelocytic leukemia cell line was induced to differentiate in 1% dimethyl sulfoxide to leukocytes with more mature myelocytic characteristics. Differentiated HL-60 cells expressed an average of 54,000 low-affinity receptors for LTB4 per cell with an average dissociation constant of 7.3 X 10(-8) M and concurrently developed the capacity to respond to LTB4 with an increase in [Ca+2]in. The binding of LTB4 to either high-affinity or low-affinity receptors appears to be sufficient to initiate an increase in [Ca+2]in in human PMN leukocytes and differentiated HL-60 cells. The specificity of LTB4 receptors in transducing maximum increases in [Ca+2]in is determined by the subset of receptors that predominate as a result of the concentration of LTB4 and the state of the responding cells.  相似文献   

4.
Rabbit anti-idiotypic IgG antibodies to the combining site of a mouse monoclonal IgG2b antibody to leukotriene B4 (LTB4) cross-reacted with human polymorphonuclear (PMN) leukocyte receptors for LTB4. Anti-idiotypic IgG and Fab both inhibited the binding of [3H]LTB4, but not [3H]N-formylmethionyl-leucylphenylalanine (fMLP), to PMN leukocytes with similar concentration-effect relationships, whereas neither nonimmune rabbit IgG nor Fab had any inhibitory activity. At a concentration of anti-idiotypic IgG that inhibited by 50% the binding of [3H] LTB4 to PMN leukocytes, the antibodies preferentially recognized high affinity receptors. Anti-idiotypic IgG and Fab inhibited PMN leukocyte chemotactic responses to LTB4, but not fMLP, with concentration-effect relationships resembling those characteristic of the inhibition of binding of [3H] LTB4, without altering the LTB4-induced release of beta-glucuronidase. Chemotaxis and increases in the cytoplasmic concentration of calcium equal in magnitude to those elicited by optimal concentrations of LTB4 were attained at respective concentrations of anti-idiotypic IgG equal to and 1/25 the level required for inhibition of binding of [3H]LTB4 by approximately 50%. Thus, the anti-idiotypic antibodies bound to PMN leukocyte receptors for LTB4 with a specificity, preference for high affinity sites, and capacity to alter PMN leukocyte functions that were similar to LTB4.  相似文献   

5.
Oxytocin initiates its insulin-like action in adipocytes through oxytocin-specific receptors. We have studied binding and structural properties of these receptors with the radioligand [3H]oxytocin. Steady-state binding was reached after 45 min, at 21 degrees C, and 10 min at 37 degrees C. Scatchard analyses of equilibrium binding data indicated a single class of oxytocin binding sites at 21 degrees C (KD = 3.3 nM, RT = 6 X 10(4) sites/cell) and 2 binding sites at 37 degrees C (KD = 1.5 nM, RT = 6 X 10(4) sites/cell; and KD = 20 nM, RT = 30 X 10(4) sites/cell). Insulin, insulin-like growth factor I, and epidermal growth factor increased oxytocin binding (approximately 20-40%), whereas adenosine, a regulator of oxytocin action, did not affect oxytocin binding. Binding activity of oxytocin was impaired by pretreatment of the hormone or adipocytes with dithiothreitol. Dithiothreitol treatment of adipocytes preferentially inactivated high-affinity binding sites. N-ethyl maleimide inhibited oxytocin binding in adipocytes more than dithiothreitol. In contrast to the inhibitory effects of dithiothreitol and N-ethyl maleimide, proteases (trypsin, chymotrypsin and papain) were not able to inhibit fat cell binding activity. These results suggested that in isolated adipocytes: there are high-affinity and low-affinity receptors, but the low-affinity receptors are absent at 21 degrees C; the binding of oxytocin can be regulated by insulin, and growth factors; and the oxytocin receptors contain disulfide bridges and free thiols that are essential for the maintenance of oxytocin binding.  相似文献   

6.
Kinetic studies showed that under appropriate conditions, [3H]clonidine binds to two distinct receptor sites in calf cortex membranes. At 23 degrees C, binding was obtained at a low-affinity site (dissociation constant, KD = 5.4 nM) and a high-affinity site (KD = 1.1 nM). In contrast, at 0 degree C, selective binding occurred to the low-affinity site only. Consequently, at 0 degree C, it was possible to evaluate the interaction of drugs with the low-affinity receptor directly. On the other hand, competition with the high-affinity receptor could be ascertained by generating displacement curves representing the differential between specific binding values obtained at 23 and 0 degree C. Guanine nucleotides selectively decreased binding to the high-affinity site without apparent influence on the low-affinity [3H]clonidine binding. The activities of various pharmacological agents at the low- and high-affinity clonidine receptors are discussed and compared with WB-4101 binding data.  相似文献   

7.
Peripheral blood polymorphonuclear leukocytes (PMNL) isolated from rabbits after an i.v. injection of endotoxin exhibited decreased chemotactic migration in response to leukotriene B4 (LTB4) and C5a, but not N-formyl-methionyl-leucyl-phenylalanine (fMLP), after endotoxin treatment. The binding of radiolabeled LTB4, fMLP, and C5a to isolated PMNL was assessed in order to determine whether altered receptor expression could account for the observed functional changes. Control PMNL expressed binding sites for fMLP, LTB4, and C5a similar to those previously characterized from human PMNL. Control PMNL expressed a single class of 14,600 +/- 2700 receptors for fMLP with a mean dissociation constant (Kd) of 2.0 +/- 0.6 nM at 0 degrees C, whereas two subclasses of binding sites were expressed for LTB4: 10,300 +/- 6800 high-affinity and 85,600 +/- 53,000 low-affinity binding sites per PMNL with mean Kd for LTB4 of 0.75 +/- 0.43 nM and 70 +/- 58 nM (mean +/- SD, n = 5), respectively. Control PMNL bound [125I]-C5a in a dose-dependent and saturable manner at 24 degrees C. At saturating concentrations of C5a, PMNL obtained from control rabbits bound 270,000 +/- 50,000 molecules of [125I]-C5a with half-maximal binding occurring at [125I]-C5a concentrations of 5.5 +/- 1.9 nM. The binding of LTB4 and C5a to PMNL obtained 24 hr after an i.v. injection of endotoxin was markedly decreased compared with control PMNL. PMNL from endotoxin-treated rabbits exhibited 68% fewer high-affinity binding sites per PMNL for LTB4 and a 51% decrease in the amount of [125I]-C5a bound at saturating concentrations compared with control PMNL. There was no significant change in the Kd of the high-affinity binding sites for LTB4, no change in the Kd and number of the low-affinity binding sites for LTB4, and a small decrease in the apparent Kd for C5a to 3.3 +/- 1.1 nM. Even though the pretreatment with i.v. endotoxin did not alter chemotactic or degranulation responses elicited by fMLP, the endotoxin pretreatment induced an eightfold increase in the receptor density without altering the Kd for fMLP. Decreased receptor expression could account in large part for the decreased chemotactic responsiveness towards C5a and LTB4 induced by LPS. The finding that a substantial increase in receptors for fMLP need not be accompanied by a comparable functional change suggests that decreased efficiency in receptor coupling to intracellular biochemical events may also result from i.v. endotoxin.  相似文献   

8.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

9.
Recently, we have obtained evidence in favor of a structural interaction between the epidermal growth factor (EGF) receptor and the Triton X-100-insoluble cytoskeleton of epidermoid carcinoma A431 cells. Here we present a further analysis of the properties of EGF receptors attached to the cytoskeleton. Steady-state EGF binding studies, analyzed according to the Scatchard method, showed that A431 cells contain two classes of EGF-binding sites: a high-affinity site with an apparent dissociation constant (KD) of 0.7 nM (7.5 x 10(4) sites per cell) and a low-affinity site with a KD of 8.5 nM (1.9 x 10(6) sites per cell). Non-equilibrium binding studies revealed the existence of two kinetically distinguishable sites: a fast-dissociating site, with a dissociation rate constant (k-1) of 1.1 x 10(-3) s-1 (1.0-1.3 x 10(6) sites per cell) and a slow-dissociating site, with a k-1 of 3.5 x 10(-5) s-1 (0.6-0.7 x 10(6) sites per cell). The cytoskeleton of A431 cells was isolated by Triton X-100 extraction. Scatchard analysis revealed that approximately 5% of the original number of receptors were associated with the cytoskeleton predominantly via high-affinity sites (KD = 1.5 nM). This class of receptors is further characterized by the presence of a fast-dissociating component (k-1 = 2.0 x 10(-3) s-1) and a slow-dissociating component (k-1 = 9.1 x 10(-5) s-1). The distribution between fast and slow sites of the cytoskeleton was similar to that of intact cells (65% fast and 35% slow sites). Incubation of A431 cells for 2 h at 4 degrees C in the presence of EGF resulted in a dramatic increase in the number of EGF receptors associated to the cytoskeleton. These newly cytoskeleton-associated receptors appeared to represent low-affinity binding sites (KD = 7 nM). Dissociation kinetics also revealed an increase of fast-dissociating sites. These results indicate that at 4 degrees C EGF induces the binding of low-affinity, fast-dissociating sites to the cytoskeleton of A431 cells.  相似文献   

10.
Rat PMN isolated from peripheral blood show a small amount of high-affinity (specific) binding of [3H]-LTB4 at nanomolar concentrations. This binding is reversible and has a stereospecificity similar to rat PMN aggregation in response to several LTB4 analogs. This population of binding sites shares many characteristics with a population of high-affinity binding sites in human PMN; however, human PMN bind a significantly greater amount of [3H]-LTB4 to a second population of specific binding sites that is not present in rat PMN. The aggregation responses of human and rat peripheral blood PMN to LTB4 are similar in magnitude and specificity, but unlike human PMN, LTB4 fails to elicit a chemotactic response in rat PMN at concentrations from 10(-10) M to 10(-6) M. Rat PMN also fail to metabolize exogenous LTB4 when compared with human PMN. These data suggest that different PMN functions, such as chemotaxis and aggregation, may involve different classes of specific receptors. The finding that rat PMN do not exhibit chemotaxis to LTB4 calls for a reevaluation of the relevance to inflammation in humans of studies of inflammation performed in rat models.  相似文献   

11.
Binding of 125I-labelled tetanus toxin to rat brain membranes in 25 mM-Tris/acetate, pH 6.0, was saturable and there was a single class of high-affinity site (KD 0.26-1.14 nM) present in high abundance (Bmax. 0.9-1.89 nmol/mg). The sites were largely resistant to proteolysis and heating but were markedly sensitive to neuraminidase. Trisialogangliosides were effective inhibitors of toxin binding (IC50 10 nM) and trisialogangliosides inserted into membranes lacking a toxin receptor were able to bind toxin with high affinity (KD 2.6 nM). The results are consistent with previous studies and the hypothesis that di- and trisialogangliosides act as the primary receptor for tetanus toxin under these conditions. In contrast, when toxin binding was assayed in Krebs-Ringer buffer, pH 7.4, binding was greatly reduced, was non-saturable and competition binding studies showed evidence for a small number of high-affinity sites (KD 0.42 nM, Bmax. 0.90 pmol/mg) and a larger number of low-affinity sites (KD 146 nM, Bmax. 179 pmol/mg). Treatment of membranes with proteinases, heat, and neuraminidase markedly reduced binding. Trisialogangliosides were poor inhibitors of toxin binding (IC50 11.0 microM), and trisialogangliosides inserted into membranes bound toxin with low affinity. The results suggest that in physiological buffers tetanus toxin binds with high affinity to a protein receptor, and that gangliosides represent only a low-affinity site.  相似文献   

12.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20 degrees C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax = 40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (Ki) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

13.
We previously established several mouse hybridoma cell lines producing monoclonal antibodies against the human interleukin 2 (IL 2) receptor molecule. As they bind to both high- and low-affinity IL 2 receptors, their effects on binding of 125I-labeled IL 2 to high- and low-affinity receptors were examined by Scatchard plot analysis. Two of these monoclonal antibodies, HIEI and H-47, reduced the IL 2 binding affinity of high-affinity receptors from a Kd of 14 to 20 pM to a Kd of 110 to 140 pM, but slightly raised that of low-affinity receptors. These two antibodies scarcely affected the numbers of high- and low-affinity receptors. On the other hand, H-31 completely blocked IL 2 binding to both high- and low-affinity receptors, and H-A26 slightly reduced the affinities of both high- and low-affinity receptors, from 17 pM to 28 pM and from 28 nM to 54 nM, respectively. H-48 had little affect on IL 2 binding to high- or low-affinity receptors. By use of these monoclonal antibodies, the inhibitory effect of IL 2 on growth of an HTLV-I-immortalized T cell line was demonstrated to be transmitted from high-affinity, but not low-affinity, receptors.  相似文献   

14.
A sesquiterpene thioacetate, 15-acetylthioxy-furodysinin (SK&F 105900) has been isolated from the sponge Dysidea SP. This compound can bind specifically to the human peripheral blood polymorphonuclear leukocyte (PMN) and to the differentiated human monocytic leukemic U-937 cell membrane leukotriene B4 (LTB4) receptors with high-affinity. This compound can also promote a concentration-dependent chemotaxis in PMNs and an intracellular calcium mobilization in U-937 cells that can be blocked by the LTB4 receptor antagonist, LY-223982. Furthermore, the calcium mobilization induced by SK&F 105900 can specifically cross-desensitize with the LTB4-induced calcium mobilization. These observations indicate that SK&F 105900 is a novel and specific high-affinity agonist that can bind to the LTB4 receptors and activate the receptor-mediated signal transduction processes in human PMN and U-937 cells.  相似文献   

15.
Rat PC12 pheochromocytoma and human A875 melanoma cells express nerve growth factor (NGF) receptors on their surfaces. Covalent crosslinking of bound 125I-NGF to PC12 or A875 intact cells or plasma membrane-enriched fractions resulted in labelling of a peptide doublet at Mr = 110,000 and a single labelled peptide at Mr = 200,000 for each of the cell and membrane preparations. However, a difference between equilibrium binding properties of NGF-receptor on PC12 and A875 cells was observed. PC12 cells exhibited biphasic binding properties with two apparent binding sites: KD = 5.2 nM sites and KD = 0.3 nM sites. The high-affinity PC12 binding sites were trypsin resistant, and 125I-NGF dissociated slowly from them. A875 cells exhibited sites with homogeneous properties (KD = 1.0 nM), all binding sites were trypsin sensitive, and 125I-NGF dissociated rapidly in the presence of unlabelled NGF. Membrane-enriched fractions from either cell type contained binding sites with a uniform low affinity (KD = 3 nM) that were trypsin sensitive, and 125I-NGF rapidly dissociated from them. Sixty to 80 percent of binding sites in membranes could be converted to the high-affinity, trypsin-resistant state by addition of wheat germ agglutinin (WGA). The loss of high-affinity, trypsin-resistant sites from PC12 cells during preparation of plasma membrane fractions does not appear to be the result of selective isolation of low-affinity sites or proteolytic degradation since there is a loss of 125I-NGF binding immediately after cell lysis which is not blocked by protease inhibitors. Also, high-affinity, trypsin-resistant binding sites are not found associated with other cell fractions. The differences between receptor properties on PC12 cells and on A875 cells apparently are the result of differences in the respective intracellular environments. Thus, significant structural homology exists between receptors on A875 and PC12 cells. Cell components other than the binding unit of the NGF receptor may be responsible for the different properties of receptor.  相似文献   

16.
Ryanodine is a specific ligand for the calcium release channel which mediates calcium release in excitation-contraction coupling in muscle. In this study, ryanodine binding in sarcoplasmic reticulum from heart muscle and skeletal muscle is further compared and correlated with function. The new findings include the following: (1) Two types of binding, high affinity (KD1 approximately 5-10 nM) and low affinity (KD2 approximately 3 microM), can now be discerned for the skeletal muscle receptor. KD1 is approximately the same as and KD2 of similar magnitude to that previously reported for heart. (2) The dissociation rates for the high-affinity binding have been directly measured for both heart and skeletal muscle (t1/2 approximately 30-40 min). These rates are more rapid than previously reported (t1/2 approximately 14 h). (3) KD1's obtained from the ratio of the dissociation and association rate constants agree with the dissociation constant measured by equilibrium binding Scatchard analysis. (4) Ryanodine binding to the low-affinity site can be correlated with a decrease in the dissociation rate constant (k-1) of the high-affinity site, and thereby in the apparent dissociation constant (KD1). The inhibition constant (KI) for inhibiting the high-affinity off rate obtained from a double-reciprocal plot of the change in off rate vs [ryanodine] is practically the same in heart (0.66 microM) and skeletal muscle (0.64 microM) and in the range of the KD2. The binding of cold ryanodine to the low-affinity site appears to lock the bound [3H]ryanodine onto the high-affinity site rather than to exchange with it. Thus, in this sense, the ryanodine receptor exhibits "positive cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Three protein kinase C (PKC) activators (PMA, mezerein, and a diacylglycerol) had bidirectional effects on human polymorphonuclear neutrophil (PMN) degranulation responses to leukotriene (LT) B4. Lower concentrations of the three agents enhanced, whereas higher concentrations inhibited, release of lysozyme and beta-glucuronidase stimulated by the arachidonic acid metabolite. Contrastingly, the activators inhibited but never enhanced LTB4-induced Ca2+ transients. We examined the causes for these varying effects. Each PKC activator reduced PMN specific binding of [3H]LTB4. Scatchard analyses revealed that PMA (greater than or equal to 0.16 nM) decreased the number of high affinity LTB4 receptors. The receptor losses correlated closely with inhibition of Ca2+ transients. PMN pretreated with 0.5 nM PMA for 5 min retained approximately 50% of their high affinity LTB4 receptors. These cells responded to 10 nM LTB4 with reduced but still substantial rises in cytosolic Ca2+, enhanced PKC mobilization, and increased granule enzyme release. The latter two effects appeared calcium-dependent because sequential exposure to PMA and LTB4 did not synergistically stimulate PKC mobilization or degranulation in PMN that were: 1) Ca2(+)-depleted; 2) challenged with 5 nM PMA; or 3) treated with LTB4 for 5 min before PMA. Each of the latter treatments completely interfered with the extent or timing of LTB4-induced Ca2+ transients. Accordingly, we suggest that the response-specific, bidirectional effects of PKC activators on LTB4 result from two opposing mechanisms. First, PKC activators down-regulate LTB4 high affinity receptors and thereby reduce those PMN responses that are not elicited by activated PKC (i.e., Ca2+ transients). Second, LTB4, by elevating cytosolic Ca2+, increases the amount of PKC mobilized by PKC activators and thereby promotes PKC-dependent responses (e.g., degranulation). The two mechanisms may be pertinent to the bidirectional effects of PKC activators on various other agonists. Furthermore, PKC, by down-regulating receptors, may serve as a physiologic stop signal for terminating function and producing a poststimulatory state of desensitization.  相似文献   

18.
Leukotriene B4 (5(S),12(R)-di-hydroxy-eicosa-6,14-cis-8,10-trans-tetraenoic acid [LTB4]) is a product of the 5-lipoxygenation of arachidonic acid, which elicits human PMN leukocyte chemotactic responses in vitro that are 50% of the maximal level at concentrations of 3 X 10(-9) M to 10(-8) M and are maximal at 2 X 10(-8) M to 10(-7) M. The specific binding of highly purified [3H]LTB4 to human PMN leukocytes was assessed both by extracting the unbound and weakly bound [3H]LTB4 with acetone at -78 degrees C and by centrifuging the PMN leukocytes through cushions of phthalate oil to separate the unbound from bound [3H]LTB4. The levels of total binding of [3H]LTB4 and of nonspecific binding of [3H]LTB4, in the presence of a 1500-fold molar excess of nonradioactive LTB4, were approximately two times higher with the phthalate oil method. Scatchard plots of the concentration dependence of the specific binding (total - nonspecific binding) of [3H]LTB4 to PMN leukocytes were linear for the acetone extraction and phthalate oil methods and revealed dissociation constants of 10.8 X 10(-9) M and 13.9 X 10(-9) M, respectively, and mean of 2.6 X 10(4) and 4.0 X 10(4) receptors per PMN leukocyte. The 5(S),12(S)-all-trans-di-HETE analog of LTB4 and 5-HETE competitively inhibited by 50% the binding of [3H]LTB4 to PMN leukocytes at respective concentrations that evoked half-maximal chemotactic responses, whereas neither N-formyl-methionyl-leucyl-phenylalanine nor chemotactic fragments of C5 inhibited the binding. Human erythrocytes exhibited no specific binding sites for [3H]LTB4. Human PMN leukocytes possess a subset of receptors for LTB4 that are distinct from those specific for peptide chemotactic factors.  相似文献   

19.
Nerve Growth Factor Receptors in Human Neuroblastoma Cells   总被引:2,自引:2,他引:2  
Receptors for the nerve growth factor protein (NGFR) present in the human neuroblastoma cell line LAN-1 were characterized. LAN-1 cells display high-affinity (type I, with KD value of 5.9 X 10(-11) M) and low-affinity (type II, with KD value of 9.2 X 10(-9) M) binding to NGF. NGFR were fractionated by preparative isoelectric focusing in a granulated gel (PEGG). High-affinity binding was found in the 5.9-6.2 pH region of the PEGG, and low-affinity binding in the 4.6-4.8 and 8.8-9.3 pH ranges. After further analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) we observed both 92.5- and 200-kDa molecular species associated with NGF binding activity. The 200-kDa protein was found in fractions displaying high-affinity NGF binding and the 92.5-kDa protein in fractions displaying low-affinity NGF binding. Equilibrium binding analysis of NGF in PEGG fractions confirmed the presence of two specific saturable binding sites with KD values similar to those observed for whole dissociated cells. When NGFR II activity from the acidic region of the PEGG chromatogram was incubated with NGFR II from the basic region of the PEGG chromatogram, there was no change in NGF binding or in the number of apparent NGF receptors. However, incubation of these same fractions with a fraction having only NGFR I showed an apparent increase in high-affinity NGF binding and a decrease in low-affinity NGF binding. Immunoprecipitation of this "mixed" fraction and analysis on SDS-PAGE under reduced and nonreduced conditions showed 200-kDa and 92.5-kDa proteins under nonreduced conditions and a 92.5-kDa protein under reduced conditions. Our findings are consistent with the hypothesis that there are two distinct NGF receptors in NGF-responsive cells. The interconvertibility of low- and high-affinity receptors and the possible existence of a modulator type protein or of "silent" type receptors are also in agreement with our findings.  相似文献   

20.
Identification of Glucagon Receptors in Rat Retina   总被引:2,自引:1,他引:1  
In this study, we characterize the glucagon receptors on rat retinal particulate preparations. The specific binding of 125I-glucagon was saturable and reversible. Apparent equilibrium conditions were established within 30-45 min. Analysis of binding data is compatible with the existence of two classes of binding sites: a high-affinity class with a KD of 7 +/- 0.8 nM and a Bmax of 2.3 +/- 0.2 pmol/mg of protein and a low-affinity class with a KD of 84.4 +/- 2.5 nM and a Bmax of 16.5 +/- 2.3 pmol/mg of protein. The 125I-glucagon binding to retinal particulate preparation was not inhibited by 1 microM concentrations of insulin, atrial natriuretic factor, angiotensin II, somatostatin, and vasoactive intestinal peptide. However, synthetic human pancreatic growth hormone-releasing factor, hGRF-44, inhibited binding, although the concentration required for half-maximal displacement was 10-fold higher than that for native glucagon. Glucagon binding was GTP sensitive. Inclusion of 0.1 mM GTP in the binding assay produced an increase in the concentration of unlabeled glucagon required for half-maximal displacement of 125I-glucagon, from 23 to 220 nM. Glucagon stimulated adenylate cyclase formation in retinal particulate preparations. The concentration of glucagon required for half-maximal activation of retinal adenylate cyclase was 16.2 nM. These results suggest that glucagon may play a role as a neurosignal transmitter in rat retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号