首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium development within its mosquito vector is an essential step in malaria transmission, as illustrated in world regions where malaria was successfully eradicated via vector control. The innate immune system of most mosquitoes is able to completely clear a Plasmodium infection, preventing parasite transmission to humans. Understanding the biological basis of this phenomenon is expected to inspire new strategies to curb malaria incidence in countries where vector control via insecticides is unpractical, or inefficient because insecticide resistance genes have spread across mosquito populations. Several aspects of mosquito biology that condition the success of the parasite in colonizing its vector begin to be understood at the molecular level, and a wealth of recently published data highlights the multifaceted nature of the mosquito response against parasite invasion. In this brief review, we attempt to provide an integrated view of the challenges faced by the parasite to successfully invade its mosquito host, and discuss the possible intervention strategies that could exploit this knowledge for the fight against human malaria.  相似文献   

2.
Plasmodium mexicanum, a malaria parasite of lizards, exhibits substantial variation among infections in the life-history traits which define its blood-dwelling stages. Such variation in life histories among infections is common in Plasmodium and may influence the ecology and evolution of the parasite's transmission success and virulence. Insight into these issues requires identification of independent traits (some traits may be bound by developmental trade-offs) and the importance of genetic versus host effects producing the variation. We studied 11 life-history traits in 120 induced infections of P. mexicanum in its natural lizard host (20 each from six donor infections). The traits varied among infections and fell into three clusters: rate/peak (rate of increase and peak parasitaemia of asexuals and gametocytes), time (duration of pre-patent period and the infection's growth) and maturity (timing of first gametocytes). Thus, few life-history traits define an infection in the lizard's blood. Donor effects were significant for ten traits and two trait clusters (maturity was the exception) suggesting genetic differences among infections may influence the rate of increase and peak parasitaemia, but not the timing of the first production of gametocytes.  相似文献   

3.
Abstract  1. Due to its effects on the phenotypic and genotypic expression of life-history traits, density-dependent competition is an important factor regulating the growth of populations. Specifically for insects, density-dependent competition among juveniles is often associated with increased juvenile mortality, delayed maturity, and reduced adult size.
2. The aim of the work reported here was to test whether the established phenotypic effects of density-dependent competition on life-history traits could be reproduced in an experimental design requiring a minimal number of individuals. Larvae of the mosquito Aedes aegypti were reared at densities of one, two, or three individuals per standard Drosophila vial and in six different conditions of larval food availability. This design required relatively few individuals per independent replicate and included a control treatment where individuals reared at a density of one larva per vial experienced no density-dependent interactions with other larvae.
3. Increased larval densities or reduced food availability led to increased larval mortality, delayed pupation, and the emergence of smaller adults that starved to death in a shorter time (indicating emergence with fewer nutritional reserves).
4. Female mosquitoes were relatively larger than males (as measured by wing length) but males tended to survive for longer. These differences increased as larval food availability increased, indicating the relative importance of these two traits for the fitness of each sex. The role of nutritional reserves for the reproductive success of males was highlighted in particular.
5. This minimalist approach may provide a useful model for investigating the effects of density-dependent competition on insect life-history traits.  相似文献   

4.
Parasite virulence, i.e. the damage done to the host, may be a by-product of the parasite's effort to maximize its fitness. Accordingly, several life-history trade-offs may explain interspecific differences in virulence, but such constraints remain little tested in an evolutionary context. In this phylogenetic study of primate malarias, I investigated the relationship between virulence and other parasite life-history traits. I used peak parasitaemia as a proxy for virulence, because it reflected parasite reproductive success and parasite-induced mortality. Peak parasitaemia was higher in specialist than in generalist species, even when confounding life-history traits were controlled. While there was a significant phylogenetic relationship between the number of competitors per host and host specialization, peak parasitaemia was unrelated to within-host competition. Therefore, the key evolutionary factor that favours virulence is host specialization, and the evolutionary success of virulent parasites, such as Plasmodium falciparum , may be better understood when the trade-off in virulence between different hosts is considered. Such phylogenetic results may help us design better protection programmes against malaria.  相似文献   

5.
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.  相似文献   

6.
The microsporidian parasite Edhazardia aedis is capable of vertical or horizontal transmission among individuals of its host, the mosquito Aedes aegypti, and either mode of transmission may follow the other. We show that following the horizontal infection of host larvae, the parasite's subsequent mode of transmission largely depends on host life history traits and their responses to different environmental conditions. In two experiments the intensity of larval exposure to infection and the amount of food available to them were simultaneously manipulated. One experiment followed the dynamics of host development and the parasite's production of spores while the other estimated the outcome of their relationship. Host life history traits varied widely across treatment conditions while those of the parasite did not. Of particular importance was the host's larval growth rate. Horizontal rather than vertical transmission by the parasite was more likely as low food and high dose conditions favoured slower larval growth rates. This pattern of transmission behaviour with host growth rate can be considered in terms of reproductive value: the potential vertical transmission success that female mosquitoes offer the parasite decreases as larval growth rates slow and makes them more attractive to exploitation for horizontal transmission (requiring host mortality). However, the lack of variation in the parasite's life history traits gave rise in some conditions to low estimates for both its vertical and horizontal transmission success. We suggest that the unresponsive behaviour of the parasite's life history traits reflects a bet-hedging strategy to reduce variance in its overall transmission success in the unpredictable environmental conditions and host larval growth rates that this parasite encounters in nature.  相似文献   

7.
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.  相似文献   

8.
We present experimental evidence that different stages of themalaria parasite Plasmodium gallinaceum differentially affectthe host-seeking behavior of its mosquito vector Aedes aegypti.In uninfected mosquitoes, host-seeking behavior is continuedif mosquitoes have ingested less than a threshold volume ofblood, whereas a larger blood meal inhibits host seeking. Weinvestigated the parasite's effect on this behavior by feedinginfected and uninfected mosquitoes for variable amounts of timeand assaying 30-45 min later whether they continued their attemptsat blood-feeding. Mosquitoes infected with oocysts (which cannotbe transmitted) had a smaller threshold volume and were lesslikely to return for further probing, whereas individuals infectedwith transmissible sporozoites increased the threshold volumerequired to inhibit host-seeking behavior. We conclude thatthe stage-specific effect of the parasite on host-seeking behavioris likely to be an active manipulation by the parasite to increaseits transmission success.  相似文献   

9.
The transmission of malaria is governed by the mosquito vector's biting rate, its mortality, and the developmental period of the parasite within the mosquito. This review covers some data on the interactions among these parameters and describes possible evolutionary mechanisms underlying two aspects of the parasite's life cycle.  相似文献   

10.
Sinden RE 《Parassitologia》1999,41(1-3):139-148
The essential passage of the malarial parasite through a mosquito vector results in major population bottlenecks in parasite numbers. The volume of the bloodmeal ingested by the female mosquito is 1-2 microliters. This may contain from 1 to 10(5) gametocytes. Of these, it is normal for just 12 to become macrogametes; 5-6 become ookinetes, and 2 develop into oocysts 2-7 days later. Of the 16,000 sporozoites produced from these two oocysts just 10-20 are inoculated by the malaria-infected female mosquito each time she probes when taking a subsequent bloodmeal. These significant population bottlenecks suggest that parasite differentiation is severely constrained by the environment in the mosquito, and therefore by the interactions between the parasite and the vector. This review will describe parasite differentiation in the mosquito and try to highlight the more important interactions between the parasite, the bloodmeal and the mosquito, attempting to identify those interactions which are essential to parasite differentiation, and those where the mosquito may be mounting effective strategies against this important pathogen. The potential exploitation of these interactions as possible mechanisms for intervention will be discussed.  相似文献   

11.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

12.
An ideal malaria vaccine will induce immune responses against each stage of the Plasmodium spp life cycle. During its complicated life cycle, the parasite exists extracellularly in the host's bloodstream, within cells that express major histocompatibility complex (MHC) molecules (hepatocytes), within cells that do not express MHC molecules (erythrocytes) and within the mosquito vector. Different arms of the immune system are required to attack the parasite at the different stages. Therefore, a multistage vaccine must be a multi-immune response vaccine. In addition, given the unique antigenicities of the different stages of the life cycle, implicit in this definition is that the vaccine be multivalent. Here, Denise Doolan and Stephen Hoffman present the rationale for developing a multistage, multivalent, multi-immune response malaria vaccine and explain why, among currently available technologies, DNA vaccines may offer the best prospect for success.  相似文献   

13.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

14.
The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission.  相似文献   

15.
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.  相似文献   

16.
It has often been suggested that vector-borne parasites alter their vector''s feeding behaviour to increase their transmission, but these claims are often based on laboratory studies and lack rigorous testing in a natural situation. We show in this field study that the malaria parasite, Plasmodium falciparum, alters the blood-feeding behaviour of its mosquito vector, Anopheles gambiae s.l., in two ways. First, mosquitoes infected with sporozoited, the parasite stage that is transmitted from the mosquito to a human, took up larger blood meals than uninfected mosquitoes. Whereas 72% of the uninfected mosquitoes had obtained a full blood meal, 82% of the infected ones had engorged fully. Second, mosquitoes harbouring sporozoites were more likely to bite several people per night. Twenty-two per cent of the infected mosquitoes, but only 10% of the uninfected mosquitoes, contained blood from at least two people. We conclude that the observed changes in blood-feeding behaviour allow the parasite to spread more rapidly among human hosts, and thus confirm that the parasite manipulates the mosquito to increase its own transmission.  相似文献   

17.
The microsporidium Octosporea bayeri can infect its host, the planktonic crustacean Daphnia magna, vertically and horizontally. The two routes differ greatly in the way the parasite leaves the harbouring host (transmission) and in the way it enters a new, susceptible host (infection). Infections resulting from each route may thus vary in the way they affect host and parasite life-histories and, subsequently, host and parasite fitness. We conducted a life-table experiment to compare D. magna infected with O. bayeri either horizontally or vertically, using three different parasite isolates. Both the infection route and the parasite isolate had significant effects on host life-history. Hosts matured at different ages depending on the parasite isolate, and at a size that varied with infection route. The frequency of host sterility and the host's life-time reproductive success were affected by both the infection route and the parasite isolate. The infection route also affected parasite life-history. The production of parasite spores was much higher in vertically than in horizontally infected hosts. We found a trade-off between the production of spores (the parasite's horizontal fitness component) and the production of infected host offspring (the parasite's vertical fitness component). This study shows that hosts and parasites can react plastically to different routes of infection, suggesting that ecological factors that may influence the relative importance of horizontal and vertical transmission can shape the evolution of host and parasite life histories, and, consequently, the evolution of virulence.  相似文献   

18.
Tellenbach C  Wolinska J  Spaak P 《Oecologia》2007,154(2):369-375
Parasites influence host life-history traits and therefore might crucially shape host populations in natural systems. In a series of laboratory experiments, we studied the impact of an oomycete brood parasite on its Daphnia (waterflea) host. We asked whether Daphnia dump the infected brood and subsequently are able to reproduce again as was occasionally observed in a preliminary study. No viable offspring developed from infected clutches, but 78% of the infected females produced healthy offspring after releasing the infected brood while molting. Neither those offsprings’ development success nor their mothers’ reproductive potential was affected by the brood parasite. However, infected Daphnia had a reduced life-span and suffered an increased susceptibility to another parasite, an unidentified bacterium. Additionally, we studied the prevalence of this brood parasite and the unidentified bacterium in a natural Daphnia assemblage in a pre-alpine lake, across changing demographic and environmental conditions. The brood parasite epidemic seemed to be host-density dependent. Our results show that the brood parasite’s impact on the host population is enhanced when combined with the unidentified bacterium.  相似文献   

19.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.  相似文献   

20.
Mutualism can be favored over exploitation of mutualism when interests of potential heterospecific partners are aligned so that individual organisms are beneficial to each others' continued growth, survival, and reproduction, that is, when exploitation of a particular partner individual is costly. A coral reef sponge system is particularly amenable to field experiments probing how costs of exploitation can be influenced by life-history characteristics. Pairwise associations among three of the sponge species are mutually beneficial. A fourth species, Desmapsamma anchorata, exploits these mutualisms. Desmapsamma also differs from the other species by growing faster, fragmenting more readily, and suffering higher mortality rates. Evaluating costs and benefits of association in the context of the complex life histories of these asexually fragmenting sponges shows costs of exploitation to be high for the mutualistic species but very low for this essentially weedy species. Although it benefits from association more than the mutualist species, by relying on their superior tensile strength and extensibility to reduce damage by physical disturbance, exploitation is favored because each individual host is of only ephemeral use. These sponges illustrate how life-history differences can influence the duration of association between individuals and, thus, the role of partner fidelity in promoting mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号