首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA polymerases play a central role in the process of DNA replication. Yet, the proteins in charge of the replication of plant organelle DNA have not been unambiguously identified. There are however many indications that a family of proteins homologous to bacterial DNA polymerase I (PolI) is implicated in organelle DNA replication. Here, we have isolated mutant lines of the PolIA and PolIB genes of Arabidopsis (Arabidopsis thaliana) to test this hypothesis. We find that mutation of both genes is lethal, thus confirming an essential and redundant role for these two proteins. However, the mutation of a single gene is sufficient to cause a reduction in the levels of DNA in both mitochondria and plastids. We also demonstrate that polIb, but not polIa mutant lines, are hypersensitive to ciprofloxacin, a small molecule that specifically induces DNA double-strand breaks in plant organelles, suggesting a function for PolIB in DNA repair. In agreement with this result, a cross between polIb and a plastid Whirly mutant line yielded plants with high levels of DNA rearrangements and severe growth defects, indicating impairments in plastid DNA repair pathways. Taken together, this work provides further evidences for the involvement of the plant PolI-like genes in organelle DNA replication and suggests an additional role for PolIB in DNA repair.  相似文献   

2.
CesA1 and CesA3 are thought to occupy noninterchangeable sites in the cellulose synthase making primary wall cellulose in Arabidopsis (Arabidopsis thaliana L. Heynh). With domain swaps and deletions, we show that sites C terminal to transmembrane domain 2 give CesAs access to their individual sites and, from dominance and recessive behavior, deduce that certain CesA alleles exclude others from accessing each site. Constructs that swapped or deleted N-terminal domains were stably transformed into the wild type and into the temperature-sensitive mutants rsw1 (Ala-549Val in CesA1) and rsw5 (Pro-1056Ser in CesA3). Dominant-positive behavior was assayed as root elongation at the restrictive temperature and dominant-negative effects were observed at the permissive temperature. A protein with the catalytic and C-terminal domains of CesA1 and the N-terminal domain of CesA3 promoted growth only in rsw1 consistent with it accessing the CesA1 site even though it contained the CesA3 N-terminal domain. A protein having the CesA3 catalytic and C-terminal domains linked to the CesA1 N-terminal domain dramatically affected growth, but only in the CesA3 mutant. This is consistent with the operation of the same access rule taking this chimeric protein to the CesA3 site. In this case, however, the transgene behaved as a genotype-specific dominant negative, causing a 60% death rate in rsw5, but giving no visible phenotype in wild type or rsw1. We therefore hypothesize that possession of CesA3(WT) protects Columbia and rsw1 from the lethal effects of this chimeric protein, whereas the mutant protein (CesA3(rsw5)) does not.  相似文献   

3.
ISG15 (interferon-stimulated gene 15) is a novel ubiquitin-like (UbL) modifier with two UbL domains in its architecture. We investigated different roles for the two UbL domains in protein modification by ISG15 (ISGylation) and the impact of Influenza B virus NS1 protein (NS1B) on regulation of the pathway. The results show that, although the C-terminal domain is sufficient to link ISG15 to UBE1L and UbcH8, the N-terminal domain is dispensable in the activation and transthiolation steps but required for efficient E3-mediated transfer of ISG15 from UbcH8 to its substrates. NS1B specifically binds to the N-terminal domain of ISG15 but does not affect ISG15 linkage via a thioester bond to its activating and conjugating enzymes. However, it does inhibit the formation of cellular ISG15 conjugates upon interferon treatment. We propose that the N-terminal UbL domain of ISG15 mainly functions in the ligation step and NS1B inhibits ISGylation by competing with E3 ligases for binding to the N-terminal domain.  相似文献   

4.
P-glycoprotein (Pgp), a member of the ABC transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anti-cancer chemotherapy. We have recently obtained EM projection images of lipid-bound Pgp without nucleotide and transport substrate that showed the two halves of the transporter separated by a central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131). Addition of nucleotide and/or substrate lead to a close association of the two halves of the transporter, thereby closing the central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2008) J. Biol. Chem. 283, 5769-5779). Here, we used cysteine-mediated disulfide cross-linking to further delineate the structural rearrangements of the two nucleotide binding domains (NBD1 and NBD2) that take place during catalysis. Cysteines introduced at or near the C-terminal ends of NBD1 and NBD2 allowed for spontaneous disulfide cross-linking under nonreducing conditions. For mutant A627C/S1276C, disulfide formation was with high efficiency and cross-linked Pgp retained 30-68% drug-stimulated ATPase activity compared with reduced or cysteine-less Pgp. Two other cysteine pairs (K615C/S1276C and A627C/K1260C) also formed a disulfide but to a lesser extent, and the cross-linked form of these two mutants had lower drug-stimulated ATPase activity. The data suggest that the C-terminal ends of the two NBDs of Pgp are not required to undergo significant motion with respect to one another during the catalytic cycle.  相似文献   

5.
Slessareva JE  Graber SG 《Biochemistry》2003,42(24):7552-7560
The molecular basis for selectivity of M1 and M2 muscarinic receptor coupling to heterotrimeric G proteins has been studied using receptors expressed in Sf9 cell membranes and reconstituted with purified chimeric G(alpha) subunits containing different regions of Gi1alpha and Gq(alpha). The abilities of G protein heterotrimers containing chimeric alpha subunits to stabilize the high-affinity state of the receptors for agonist and to undergo receptor stimulated guanine nucleotide exchange was compared with G protein heterotrimers containing either native Gi1alpha or Gq(alpha). The data confirm the importance of the proper context of the C-terminus of Galpha by demonstrating that the C-terminus of Gi1alpha, when placed in the context of Gq(alpha), prevents coupling to muscarinic M1 receptors, while the C-terminus of Gq(alpha), when placed in the context of Gi1alpha, prevents coupling to muscarinic M2 receptors. However, C-terminal amino acids of Gq(alpha) placed in the context of Gi1alpha were not sufficient to allow M1 receptor coupling, nor were C-terminal amino acids of Gi1alpha placed in the context of Gq(alpha) sufficient for M2 receptor coupling. The unique six amino acid N-terminal extension of Gq(alpha) when added to the N-terminus of Gi1alpha neither prevented M2 receptor coupling nor permitted M1 receptor coupling. A Gi1alpha-based chimera containing both N- and C-terminal regions of Gq(alpha) gained the ability to productively couple M1 receptors suggesting that the proper context of both N- and C-termini is required for muscarinic receptor coupling.  相似文献   

6.
7.
Synthetic replicates of naturally occurring cysteine-rich peptides such as hormones, neurotransmitters, growth factors, enzyme inhibitors, defensins and toxins often can be oxidatively folded in high yields to their native structure in simple redox buffers. Thereby, identical cysteine patterns in the sequence were found to generate identical disulfide connectivities and homologous spatial structures despite significant variability in the non-cysteine positions. Minicollagen-1 from the nematocysts of Hydra is a trimeric protein that contains cysteine-rich domains at the N and C termini, which are involved in the assembly of an intermolecular disulfide network. Determination of the three-dimensional structures of peptides corresponding to the N-terminal and C-terminal domains by NMR spectroscopy revealed a remarkable exception from the general rule. Despite an identical cysteine pattern, the two domains of minicollagen-1 form different disulfide bridges and exhibit distinctly different folds, both of which are not found in the current structural databases. To our knowledge, this is the first case where two relatively short peptides with the abundant cysteine residues in identical sequence positions fold uniquely and with high yields into defined, but differing, structures. Therefore, the cysteine-rich domains of minicollagen constitute ideal model systems for studies of the interplay between folding and oxidation in proteins.  相似文献   

8.
9.
Drosophila Staufen protein is required for the localization of oskar mRNA to the posterior of the oocyte, the anterior anchoring of bicoid mRNA and the basal localization of prospero mRNA in dividing neuroblasts. The only regions of Staufen that have been conserved throughout animal evolution are five double-stranded (ds)RNA-binding domains (dsRBDs) and a short region within an insertion that splits dsRBD2 into two halves. dsRBDs 1, 3 and 4 bind dsRNA in vitro, but dsRBDs 2 and 5 do not, although dsRBD2 does bind dsRNA when the insertion is removed. Full-length Staufen protein lacking this insertion is able to associate with oskar mRNA and activate its translation, but fails to localize the RNA to the posterior. In contrast, Staufen lacking dsRBD5 localizes oskar mRNA normally, but does not activate its translation. Thus, dsRBD2 is required for the microtubule-dependent localization of osk mRNA, and dsRBD5 for the derepression of oskar mRNA translation, once localized. Since dsRBD5 has been shown to direct the actin-dependent localization of prospero mRNA, distinct domains of Staufen mediate microtubule- and actin-based mRNA transport.  相似文献   

10.
MARTX (multifunctional autoprocessing repeats‐in‐toxin) family toxins are produced by Vibrio cholerae, Vibrio vulnificus, Aeromonas hydrophila and other Gram‐negative bacteria. Effector domains of MARTX toxins cross the cytoplasmic membrane of a host cell through a putative pore formed by the toxin's glycine‐rich repeats. The structure of the pore is unknown and the translocation mechanism of the effector domains is poorly understood. We examined the thermodynamic stability of the effector domains of V. cholerae and A. hydrophila MARTX toxins to elucidate the mechanism of their translocation. We found that all but one domain in each toxin are thermodynamically unstable and several acquire a molten globule state near human physiological temperatures. Fusion of the most stable cysteine protease domain to the adjacent effector domain reduces its thermodynamic stability ~ 1.4‐fold (from 21.8 to 16.1 kJ mol?1). Precipitation of several individual domains due to thermal denaturation is reduced upon their fusion into multi‐domain constructs. We speculate that low thermostability of the MARTX effector domains correlates with that of many other membrane‐penetrating toxins and implies their unfolding for cell entry. This study extends the list of thermolabile bacterial toxins, suggesting that this quality is essential and could be susceptible for selective targeting of pathogenic toxins.  相似文献   

11.
The use of animal cell cultures as tools for studying the microsporidia of insects and mammals is briefly reviewed, along with an in depth review of the literature on using fish cell cultures to study the microsporidia of fish. Fish cell cultures have been used less often but have had some success. Very short-term primary cultures have been used to show how microsporidia spores can modulate the activities of phagocytes. The most successful microsporidia/fish cell culture system has been relatively long-term primary cultures of salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also support the development of Enterocytozoon bienusi, which is of mammalian origin. Some modest success has been achieved in growing Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to be the only published example of any fish cell line being permanently infected with microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise to be valuable in understanding and treating microsporidia infections in fish, which are increasingly of economic importance.  相似文献   

12.
Rapid induction of specific mRNAs by auxin in pea epicotyl tissue   总被引:38,自引:0,他引:38  
DNA sequences complementary to three indoleacetic acid (IAA)-inducible mRNAs in pea epicotyl tissue were isolated by differential plaque filter hybridization of cDNA libraries constructed in the vector lambda gt10. Clone pIAA6 hybridized to an mRNA encoding the previously identified translational product polypeptide 6 (Mr 22,000), and clone pIAA4/5 hybridized to one or two mRNAs, encoding polypeptides 4 and 5 (Mr 23,000 and 25,000, respectively). The cDNA clones were subsequently used to characterize the hormonally mediated mRNA accumulation. The induction of the mRNAs was rapid, within 15 minutes of exposure to the IAA, and specific to auxins. Anaerobiosis, heat and cold stress did not induce the mRNAs. Other plant hormones, such as gibberellic acid, kinetin, abscisic acid and ethylene were also unable to cause or interfere with the IAA-induced mRNA accumulation. The hormonally regulated mRNAs were induced at least 50 to 100-fold above control levels after two hours of treatment with IAA and the accumulation was (1) independent of protein synthesis, (2) completely abolished by alpha-amanitin, (3) not due to polyadenylylation of pre-existing RNAs, and (4) independent of IAA and fusicoccin-induced H+ secretion. The IAA-induced mRNAs returned to control levels within three hours after removal of IAA, and the hormonally regulated genes were primarily expressed in the third and second internode of the seven-day-old etiolated pea seedling. The data indicate that IAA increases the amount of specific mRNAs rather than alters the translatability of pre-existing mRNAs. Auxin-induced H+ secretion appears not to have a potential role in mediating the induction and perhaps is a consequence of the enhanced biosynthetic activity induced by the hormone. The IAA-mediated mRNA induction is the fastest known for any plant growth regulator and may represent a primary hormonal response to auxin.  相似文献   

13.
The basal body is a microtubule-organizing center responsible for organizing the cilium, a structure important for cell locomotion and sensing of the surrounding environment. A widely conserved basal body component is the Ca(2+)-binding protein centrin. Analyses of centrin function suggest a role in basal body assembly and stability; however, its molecular mechanisms remain unclear. Here we describe a mutagenic strategy to study the function and essential nature of the various structural features of Cen1 in the ciliate Tetrahymena. We find that the two domains of Cen1 are both essential, and examination of strains containing mutant CEN1 alleles indicates that there are two predominant basal body phenotypes: misorientation of newly assembled basal bodies and stability defects. The results also show that the two domains of Cen1 are able to bind Ca(2+) and that perturbation of Ca(2+) binding affects Cen1 function. In all, the data suggest that the two domains of Cen1 have distinct functions.  相似文献   

14.
The 220-kDa Bordetella pertussis filamentous hemagglutinin (FHA) is the major exported protein found in culture supernatants. The structural gene of FHA has a coding potential for a 367-kDa protein, and the mature form constitutes the N-terminal 60% of the 367-kDa precursor. The C-terminal domain of the precursor was found to be important for the high-level secretion of full-length FHA but not of truncated analogs (80 kDa or less). The secretion of full-length and truncated FHA polypeptides requires the presence of the approximately 100-amino-acid N-terminal domain and the outer membrane protein FhaC, homologous to the N-terminal domains of the Serratia marcescens and Proteus mirabilis hemolysins and their accessory proteins, respectively. By analogy to these hemolysins, it is likely that the N-terminal domain of the FHA precursor interacts, directly or indirectly, with the accessory protein during FHA biogenesis. However, immunogenicity and antigenicity studies suggest that the N-terminal domain of FHA is masked by its C-terminal domain and therefore should not be available for its interactions with FhaC. These observations suggest a model in which the C-terminal domain of the FHA precursor may play a role as an intramolecular chaperone to prevent premature folding of the protein. Both heparin binding and hemagglutination are expressed by the N-terminal half of FHA, indicating that this domain contains important functional regions of the molecule.  相似文献   

15.
N-Acetylneuraminic acid is a main constituent of glycoproteins and gangliosides. In many membrane-bound receptors it is the target for external stimuli. The key enzyme for its biosynthesis is the bifunctional enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, catalysing the first two steps of the biosynthesis in the cytosol. The rat enzyme was previously isolated and characterised. In this report we present the corresponding human cDNA sequence, compare it with the primary structure of the rodent enzyme, and report the analysis of its expression in different human tissues and cell lines.  相似文献   

16.
17.
DmRECQ5/QE is a member of the RECQ5 subfamily, which shares homology with the Escherichia coli RecQ DNA helicase. Although the DNA helicase activity of RECQ5/QE has been characterized in vitro, the in vivo function of RECQ5/QE was essentially unknown. To investigate the cellular role of RECQ5, the potential of RECQ5/QE was evaluated by substitution of the only RecQ-like helicase, Sgs1, in budding yeast. RECQ5/QE can complement several phenotypes of sgs1, including the synthetic growth defect with srs2, the hypersensitivity to hydroxyurea and methyl methanesulfonate, and the elevated frequency of homologous recombination and sister chromatid exchange (SCE), but poorly complemented the suppression of slow growth in top3. These data suggested that RECQ5/QE exhibits an evolutionarily conserved RecQ function in vivo. The RECQ5/QE domain necessary for the yeast complementation was determined. The helicase domain and helicase activity were required to complement both the sgs1srs2 and sgs1top3 phenotypes. In contrast, the C-terminal domain was dispensable for complementing the sgs1srs2 phenotype, but was required for the sgs1top3 phenotype. These results suggested that the RECQ5/QE helicase activity is important for cellular function and that the C-terminal domain has a specific function in the absence of Top3.  相似文献   

18.
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N- and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.  相似文献   

19.
Zhu Y  Li Z  Xu B  Li H  Wang L  Dong A  Huang H 《植物学报(英文版)》2008,50(7):897-905
During leaf organogenesis, a critical step for normal leaf primordium initiation is the repression of the class 1 KNOTTED1-like homeobox (KNOX) genes. After leaf primordia are formed, they must establish polarity for normal leaf morphogenesis.Recent studies have led to the identification of a number of genes that participate in the class 1 KNOX gene repression and/or the leaf polarity establishment. ASTMMETRIC LEAVES1 and 2 (AS1 and AS2) are two of these genes, which are critical for both of these two processes. As a first step towards understanding the molecular genetic basis of the AS1-AS2 action, we determined the subcellular Iocalizations of the two proteins in both tobacco BY2 cells and Arabidopsis plants,by fusing them to yellow/cyan fluorescent protein (YFPICFP). Our data showed that AS1 and AS2 alone were predominantly localized in the nucleolus and the nucleoplasm, respectively. The presence of both AS1 and AS2 proteins in the same interphase cell demonstrated their co-localization in both nucleolus and nucleoplasm. In addition, AS1 alone was able to associate with the condensed chromosome in the metaphase cell. Our data suggest that AS1, AS2 and the AS1-AS2 protein complex may have distinct functions, which are all required for normal plant development.  相似文献   

20.
Tam AT  Pike BL  Heierhorst J 《Biochemistry》2008,47(12):3912-3916
Signaling proteins often contain multiple modular protein-protein interaction domains of the same type. The Saccharomyces cerevisiae checkpoint kinase Rad53 contains two phosphothreonine-binding forkhead-associated (FHA) domains. To investigate if the precise position of these domains relative to each other is important, we created three rad53 alleles in which FHA1 and FHA2 domains were individually or simultaneously transposed to the opposite location. All three mutants were approximately 100-fold hypersensitive to DNA lesions whose survival requires intact Rad53 FHA domain functions, but they were not hypersensitive to DNA damage that is addressed in an FHA domain-independent manner. FHA domain-transposed Rad53 could still be recruited for activation by upstream kinases but then failed to autophosphorylate and activate FHA domain-dependent downstream functions. The results indicate that precise FHA domain positions are important for their roles in Rad53, possibly via regulation of the topology of oligomeric Rad53 signaling complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号