共查询到20条相似文献,搜索用时 0 毫秒
1.
Yamanaka A Muraki Y Tsujino N Goto K Sakurai T 《Biochemical and biophysical research communications》2003,303(1):120-129
Orexins are a pair of neuropeptides implicated in energy homeostasis and arousal. Here we characterize the electrophysiological properties of orexin neurons using slice preparations from transgenic mice in which orexin neurons specifically express green fluorescent protein. Orexin neurons showed high frequency firing with little adaptation by injecting a positive current. The hyperpolarization-activated current was observed in orexin neurons by a negative current injection. The neurotransmitters, which were implicated in sleep/wake regulation, affected the activity of orexin neurons; noradrenaline and serotonin hyperpolarized, while carbachol depolarized orexin neurons in either the presence or absence of tetrodotoxin. It has been reported that orexins directly or indirectly activate the nuclei that are the origin of the neurons containing these neurotransmitters. Our data suggest that orexin neurons have reciprocal neural circuitries between these nuclei for either a positive or negative feedback loop and orchestrate the activity of these neurons to regulate the vigilance states. 相似文献
2.
microRNAs(miRNAs)是一类长度约为22nt的非编码小RNA,从单细胞到多细胞真核生物中都广泛存在,在进化过程中高度保守,对动物发育、生理功能及病理过程都具有重要调控作用。斑马鱼(Danio rerio)是现代生物学研究中广泛使用的模式动物,以斑马鱼为模型研究miRNAs可以揭示miRNAs在脊椎动物中的功能。文章就miRNAs整体缺失对斑马鱼胚胎发育的影响及一些miRNAs在斑马鱼早期发育过程中的调控机制进行了综述,从而为探索miRNAs在脊椎动物中的功能及鱼类的生产育种提供理论基础。 相似文献
3.
Accumulating lines of evidence indicated that glial cells play important roles in regulating the neuronal development. It has been reported by a number of authors that astroglia promote the survival of neurons and the neurite outgrowth by several diffusible factors and membrane-associated factors. In the present article, we have reviewed the astroglia-derived bioactive substances which possibly affect the neuronal development in the central nervous system. 相似文献
4.
5.
David M. Holtzman Sandra Lee Yiwen Li Jane Chua-Couzens Houhui Xia David S. Bredt William C. Mobley 《Neurochemical research》1996,21(7):861-868
Nerve growth factor (NGF) acts through the receptor tyrosine kinase trkA to serve as a trophic factor for cholinergic neurons
in the medial septal nucleus and vertical limb of the diagonal band. We have previously shown that the neuronal isoform of
nitric oxide synthase (NOS) is selectively expressed in a large fraction of trkA-expressing cholinergic neurons in these brain
regions in the adult rat, and that NGF induces the expression of neuronal-NOS in these cells. Herein, we show that: 1) neuronal-NOS
is also localized to these neurons in the developing septum; 2) the expression of neuronal-NOS is regulated in the developing
medial septal nucleus and vertical limb of the diagonal band; 3) neuronal-NOS regulation parallels that for other markers
of basal forebrain cholinergic neuron differentiation, such as cholineacetyltransferase; and 4) NGF infusion in the postnatal
period induces robust increases in neuronal-NOS mRNA and in NOS activity in the basal forebrain. Taken together with earlier
findings, our results suggest that neuronal-NOS has a role in the differentiation and mature function of septal cholinergic
neurons. Through enhancing neuronal-NOS synthesis, endogenous NGF is likely to regulate NO functions in vivo.
Special issue dedicated to Dr. Hans Thoenen. 相似文献
6.
7.
8.
Regulation of glial development by cystatin C 总被引:1,自引:0,他引:1
Hasegawa A Naruse M Hitoshi S Iwasaki Y Takebayashi H Ikenaka K 《Journal of neurochemistry》2007,100(1):12-22
Cystatin C (CysC) is an endogenous cysteine proteases inhibitor produced by mature astrocytes in the adult brain. Previously we isolated CysC as a factor activating the glial fibrillary acidic protein (GFAP) promoter, and showed that CysC is expressed in astrocyte progenitors during development. Here we show that protease inhibitor activity increased daily in conditioned medium, and that this activity was mainly a result of CysC released from primary cultured cells. Human CysC added to the culture medium of primary brain cells increased the number of GFAP-positive and nestin-positive cells. Human CysC also increased the number of neurospheres formed from embryonic brain, and thus it increases the number of neural stem/precursor cells in a manner similar to glycosylated rat CysC. The addition of a neutralizing antibody, on the other hand, greatly decreased the number of GFAP and glutamate aspartate transporter (GLAST)-positive astrocytes. This decrease was reversed by the addition of CysC but not by another cysteine protease inhibitor. Thus, the promotion of astrocyte development by CysC appears to be independent of its protease inhibitor activity. The antibody increased the number of oligodendrocytes and their precursors. Therefore, CysC modifies glial development in addition to its activity against neural stem/precursor cells. 相似文献
9.
10.
Regulation of pancreas development by hedgehog signaling 总被引:27,自引:0,他引:27
Hebrok M Kim SK St Jacques B McMahon AP Melton DA 《Development (Cambridge, England)》2000,127(22):4905-4913
Pancreas organogenesis is regulated by the interaction of distinct signaling pathways that promote or restrict morphogenesis and cell differentiation. Previous work has shown that activin, a TGF(beta+) signaling molecule, permits pancreas development by repressing expression of Sonic hedgehog (Shh), a member of the hedgehog family of signaling molecules that antagonize pancreas development. Here we show that Indian hedgehog (Ihh), another hedgehog family member, and Patched 1 (Ptc1), a receptor and negative regulator of hedgehog activity, are expressed in pancreatic tissue. Targeted inactivation of Ihh in mice allows ectopic branching of ventral pancreatic tissue resulting in an annulus that encircles the duodenum, a phenotype frequently observed in humans suffering from a rare disorder known as annular pancreas. Shh(-)(/)(-) and Shh(-)(/)(-) Ihh(+/)(-) mutants have a threefold increase in pancreas mass, and a fourfold increase in pancreatic endocrine cell numbers. In contrast, mutations in Ptc1 reduce pancreas gene expression and impair glucose homeostasis. Thus, islet cell, pancreatic mass and pancreatic morphogenesis are regulated by hedgehog signaling molecules expressed within and adjacent to the embryonic pancreas. Defects in hedgehog signaling may lead to congenital pancreatic malformations and glucose intolerance. 相似文献
11.
12.
Li P Yao H Zhang Z Li M Luo Y Thompson PR Gilmour DS Wang Y 《Molecular and cellular biology》2008,28(15):4745-4758
13.
14.
Factors regulating development of cholinergic spinal neurons were examined in cultures of dissociated embryonic rat spinal cord. Levels of choline acetyltransferase (CAT) activity in freshly dissociated cells decreased rapidly, remained low for the first week in culture, and then increased. The decrease in enzyme activity was partially prevented by increased cell density or by treatment with spinal cord membranes. CAT activity was also stimulated by treatment with MANS, a molecule solubilized from spinal cord membranes. The effects of MANS were greatest in low-density cultures and in freshly plated cells, suggesting that the molecule may substitute for the effects of elevated density and cell-cell contact. CAT activity in ventral (motor neuron-enriched) spinal cord cultures was similarly regulated by elevated density or treatment with MANS, whereas enzyme activity was largely unchanged in mediodorsal (autonomic neuron-enriched) cultures under these conditions. These observations suggest that development of cholinergic motor neurons and autonomic neurons are not regulated by the same factors. Treatment of ventral spinal cord cultures with MANS did not increase the number of cholinergic neurons detected by immunocytochemistry with a monoclonal CAT antibody, suggesting that MANS did not increase motor neuron survival but rather stimulated levels of CAT activity per neuron. These observations indicate that development of motor neurons can be regulated by cell-cell contact and that the MANS factor may mediate the stimulatory effects of cell-cell contact on cholinergic expression. 相似文献
15.
Thirkill TL Hendren SR Soghomonians A Mariano NF Barakat AI Douglas GC 《Cell communication and signaling : CCS》2004,2(1):4
Background
In human and non-human primates, migratory trophoblasts penetrate the uterine epithelium, invade uterine matrix, and enter the uterine vasculature. Invasive trophoblasts show increased expression of β1 integrin. Since trophoblast migration within the uterine vasculature involves trophoblast attachment to endothelial cells lining the vessel walls, this raises the possibility that cell-cell contact and/or factors released by endothelial cells could regulate trophoblast integrin expression. To test this, we used an in vitro system consisting of early gestation macaque trophoblasts co-cultured on top of uterine microvascular endothelial cells. 相似文献16.
17.
Regulation of vascular development by fibroblast growth factors 总被引:5,自引:0,他引:5
Fibroblast growth factors (FGFs) are potent stimulators of angiogenesis in vitro and in vivo. However, the precise role of FGFs and vascular development in normal and pathological tissue has long remained ill defined. Recently, substantial progress has been made toward a better understanding of their role. Genetic studies in mice or in culture systems indicate a role for FGFs in vessel assembly and sprouting. FGFs also stimulate blood vessel branching and lymphangiogenesis. The molecular mechanisms by which FGFs mediate angiogenesis are also better understood. Finally, the FGF/FGF-receptor system has become a focus for the development of novel therapeutic strategies for the treatment of angiogenesis-related diseases such as tissue ischemia.Work described herein from our laboratory was supported by grants from the Ligue Nationale contre le Cancer, the Association de la Recherche sur le Cancer, Rétina France, the Institut National de la Santé et de la Recherche Médicale (INSERM), and the Ministère de la Recherche 相似文献
18.
Roos S Kanai Y Prasad PD Powell TL Jansson T 《American journal of physiology. Cell physiology》2009,296(1):C142-C150
The activity of placental amino acid transporters is decreased in intrauterine growth restriction (IUGR), but the underlying regulatory mechanisms have not been established. Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has been shown to decrease the activity of the system L amino acid transporter in human placental villous fragments, and placental mTOR activity is decreased in IUGR. In the present study, we used cultured primary trophoblast cells to study mTOR regulation of placental amino acid transporters in more detail and to test the hypothesis that mTOR alters amino acid transport activity by changes in transporter expression. Inhibition of mTOR by rapamycin significantly reduced the activity of system A (-17%), system L (-28%), and taurine (-40%) amino acid transporters. mRNA expression of isoforms of the three amino acid transporter systems in response to mTOR inhibition was measured using quantitative real-time PCR. mRNA expression of l-type amino acid transporter 1 (LAT1; a system L isoform) and taurine transporter was reduced by 13% and 50%, respectively; however, mTOR inhibition did not alter the mRNA expression of system A isoforms (sodium-coupled neutral amino acid transporter-1, -2, and -4), LAT2, or 4F2hc. Rapamycin treatment did not significantly affect the protein expression of any of the transporter isoforms. We conclude that mTOR signaling regulates the activity of key placental amino acid transporters and that this effect is not due to a decrease in total protein expression. These data suggest that mTOR regulates placental amino acid transporters by posttranslational modifications or by affecting transporter translocation to the plasma membrane. 相似文献
19.
Regulation of Arabidopsis root development by nitrate availability 总被引:22,自引:0,他引:22
When the root systems of many plant species are exposed to a localized source of nitrate (NO3- they respond by proliferating their lateral roots to colonize the nutrient-rich zone. This study reviews recent work with Arabidopsis thaliana in which molecular genetic approaches are being used to try to understand the physiological and genetic basis for this response. These studies have led to the conclusion that there are two distinct pathways by which NO3- modulates root branching in Arabidopsis. On the one hand, meristematic activity in lateral root tips is stimulated by direct contact with an enriched source of NO3- (the localized stimulatory effect). On the other, a critical stage in the development of the lateral root (just after its emergence from the primary root) is highly susceptible to inhibition by a systemic signal that is related to the amount of NO3- absorbed by the plant (the systemic inhibitory effect). Evidence has been obtained that the localized stimulatory effect is a direct effect of the NO3- ion itself rather than a nutritional effect. A NO3(-)-inducible MADS-box gene (ANR1) has been identified which encodes a component of the signal transduction pathway linking the external NO3- supply to the increased rate of lateral root elongation. Experiments using auxin-resistant mutants have provided evidence for an overlap between the auxin and NO3- response pathways in the control of lateral root elongation. The systemic inhibitory effect, which does not affect lateral root initiation but delays the activation of the lateral root meristem, appears to be positively correlated with the N status of the plant and is postulated to involve a phloem-mediated signal from the shoot. 相似文献
20.
Bailey TJ El-Hodiri H Zhang L Shah R Mathers PH Jamrich M 《The International journal of developmental biology》2004,48(8-9):761-770
The paired-like homeobox-containing gene Rx has a critical role in the eye development of several vertebrate species including Xenopus, mouse, chicken, medaka, zebrafish and human. Rx is initially expressed in the anterior neural region of developing embryos, and later in the retina and ventral hypothalamus. Abnormal regulation or function of Rx results in severe abnormalities of eye formation. Overexpression of Rx in Xenopus and zebrafish embryos leads to overproliferation of retinal cells. A targeted elimination of Rx in mice results in a lack of eye formation. Mutations in Rx genes are the cause of the mouse mutation eyeless (ey1), the medaka temperature sensitive mutation eyeless (el) and the zebrafish mutation chokh. In humans, mutations in Rx lead to anophthalmia. All of these studies indicate that Rx genes are key factors in vertebrate eye formation. Because these results cannot be easily reconciled with the most popular dogmas of the field, we offer our interpretation of eye development and evolution. 相似文献